
Lifelong Anomaly Detection Through Unlearning
Min Du

University of California, Berkeley

min.du@berkeley.edu

Zhi Chen

University of California, Berkeley

zhichen98@berkeley.edu

Chang Liu

Citadel Securities

liuchang2005acm@gmail.com

Rajvardhan Oak

University of California, Berkeley

rvoak@berkeley.edu

Dawn Song

University of California, Berkeley

dawnsong@berkeley.edu

ABSTRACT
Anomaly detection is essential towards ensuring system security

and reliability. Powered by constantly generated system data, deep

learning has been found both effective and flexible to use, with its

ability to extract patterns without much domain knowledge. Exist-

ing anomaly detection research focuses on a scenario referred to as

zero-positive, which means that the detection model is only trained

for normal (i.e., negative) data. In a real application scenario, there

may be additional manually inspected positive data provided after

the system is deployed. We refer to this scenario as lifelong anomaly
detection. However, we find that existing approaches are not easy

to adopt such new knowledge to improve system performance.

In this work, we are the first to explore the lifelong anomaly
detection problem, and propose novel approaches to handle corre-

sponding challenges. In particular, we propose a framework called

unlearning, which can effectively correct the model when a false

negative (or a false positive) is labeled. To this aim, we develop

several novel techniques to tackle two challenges referred to as

exploding loss and catastrophic forgetting. In addition, we abstract

a theoretical framework based on generative models. Under this

framework, our unlearning approach can be presented in a generic

way to be applied to most zero-positive deep learning-based anom-

aly detection algorithms to turn them into corresponding lifelong

anomaly detection solutions.

We evaluate our approach using two state-of-the-art zero-positive

deep learning anomaly detection architectures and three real-world

tasks. The results show that the proposed approach is able to sig-

nificantly reduce the number of false positives and false negatives

through unlearning.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; • Information systems → Online analyt-
ical processing; • Computing methodologies → Online learning

settings.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3363226

KEYWORDS
anomaly detection; online learning; unlearning

ACM Reference Format:
Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. 2019.

Lifelong Anomaly Detection Through Unlearning. In 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), November
11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3319535.3363226

1 INTRODUCTION
Anomaly detection is an indispensable step for security, owing

to unavoidable vulnerabilities in complex computer systems and

ceaselessly trying of sophisticated attacks [4]. Modern systems con-

stantly produce system data that may reflect system status, which

are valuable data source towards real-time anomaly detection.

Deep learning has been an effective approach with its ability to

extract patterns from massive data [8, 23]. For example, a naive

way is to train a supervised model with both normal and abnor-

mal data, and use the trained model to assign labels in detection.

A more desirable approach is to train a model that could detect

unforeseen anomalies such as zero-day attacks [42]. That is, the

deep learning model is capable of detecting anomaly types that are

not known while it is being trained. To achieve this goal, anomaly

detection methods that do not require any abnormal data for detec-

tion are preferred, which are referred to as “zero-positive” anomaly

detection [23].

There have been several works proposed to handle this case. For

example, LSTM-based anomaly detection models [8, 25] could be

trained on normal time-series data to do forecasting, and detect a

real data point as abnormal if it deviates from the predicted one. As

another example, autoencoder-based anomaly detection models [15,

47] are proposed to detect anomaly over data that is time-insenstive,

i.e., each data point is independent to each other.

A problem for zero-positive anomaly detection is that it may

not always generalize. That is, an abnormal event observed during

test time, which we refer to as false negative, can be classified as

normal. In practice, administrator can manually inspect a small

portion of the events and provide labels. However, it remains open

for a deep learning-based approach how to effectively update the

model with these new labeled data. For example, in a network traffic

anomaly detection application, the emerging of newworkloads may

require the model to learn new patterns and to optionally forget old

patterns in a controlled manner. Moreover, if system administrators

provide feedback on false negatives (and false positives as well),

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1283

https://doi.org/10.1145/3319535.3363226
https://doi.org/10.1145/3319535.3363226

the model may also need to be updated in a cost-effective manner

to better serve its goal.

In this paper, we focus on the lifelong anomaly detection problem
to fill the gap. There have been several challenges to achieve the

goal. First, so far, there have been no mechanism to make a deep

learning-based anomaly detection model remember an abnormal
instance. To make the model remember a normal instance x , most

existing approaches learn a model to predict Pr(x), and make this

probability high enough to be considered.

Therefore, to make the model remember x is abnormal, we need

to decrease the predicted probability Pr(x). This is equivalent to
make themodel forget that x is a normal instance. Based on this idea,

we develop an algorithm called unlearn to make a model unlearn

that a false negative instance is normal. Note that the concept of

unlearning has been proposed before by Cao et al. [3], which, unlike
our work, focuses on unlearning samples that exist in the training

dataset.

Second, naively decreasing the probability of Pr(x)will also likely
make the model predict other normal events as abnormal. We refer

to this issue as exploding loss, where the term loss is represented as

−logPr(x). When Pr(x) is close to zero, the loss can be arbitrarily

large. Maximizing it will cause deep learning models to become

arbitrary, and not well-functioning to serve the anomaly detection

task. Under the unlearning framework, we develop the bounding
loss and learning rate shrinking techniques to mitigate this issue.

Third, since the lifelong anomaly detection problem will run in

fashion that the model will keep being updated over time, it may

forget previously observed examples. This issue is typically referred

to as catastrophic forgetting in the deep learning literature [12].

A naive solution to this problem is to retrain the model with all

previously observed examples. However, this naive approach is not

practical, since the data set will be ever-growing over time, and

retraining will soon become too costly. To tackle this issue, we

develop an incremental learning approach to leverage a maintained

important memory set to make the model not forgetting important

past examples.

Fourth, we hope our approach can be generic to be applied to

existing deep learning-based anomaly detection algorithms so that

we can take the advantage of previous work. We observe that most

existing approaches can be captured by a class of machine learning

algorithms, called generative models. We thus abstract previous

approaches in a theoretical framework. By taking advantage of this

framework, we can easily present our unlearning algorithm in a

generic way to make sure it can be applied to an arbitrary deep

learning-based anomaly detection algorithm.

We summarize our main contributions as below.

(1) We are the first to examine the lifelong learning for deep learn-

ing based anomaly detection problems. To this aim, we propose

the unlearning framework which can be applied to any deep

learning-based zero-positive anomaly detection approach to

turn it into a lifelong anomaly detection solution.

(2) We propose novel techniques to tackle the exploding loss and
catastrophic forgetting challenges. While the former is unique

to anomaly detection, the latter is a generic lifelong learning

problem. We hope our solutions can inspire more studies of

these issues.

(3) As a side product, we abstract a theoretical framework to apply a

generative model for anomaly detection, so that our unlearning

approach can be presented in a generic way. We hope this

framework can shed new light to future deep learning-based

anomaly detection research.

(4) We evaluate our approach using three real anomaly detection

datasets, namely, HDFS log, Yahoo network traffic, and credit

card transaction. We show that our proposed lifelong learning

method could significantly reduce both the number of false

positives and the number of false negatives. For example, for

HDFS log, the experiment results show a reduction of up to

77.3% false positives and up to 76.6% false negatives, under

different thresholds.

The rest of the paper is organized as follows. In Section 2, we for-

malize the anomaly detection problem and introduce the theoretical

framework to apply generative models for anomaly detection. Then

we present our unlearning framework and key technical novelties

to handle the challenges in Section 3. In Section 4, we evaluate

our proposed approach using various dataset and deep learning

architectures. We discuss our observations in Section 5 and related

work in Section 6. In the end, we conclude in Section 7.

2 LIFE-LONG ANOMALY DETECTION
In this section, we will first explain the zero-positive anomaly de-

tection using a real-world example. Then we will formalize this

problem, and introduce the state-of-the-art deep learning-based

approach.

2.1 Motivation examples
System data collected in real-time could be continuous values

such as CPU usage and temperature, or categorical values such

as SYSCALL and function API calls. Each data point could either

be a single value, or a vector. Moreover, system status and events

evolve in time. The collected data points could either be analyzed as

independent instances, or as time series events with time dimension

involved. For example, an event CPU-high could itself indicate an

anomaly, or only be an anomaly when it’s following some event.

Previous work has extensively explored system data for anomaly

detection, for example, using LSTM model on system logs [8] to

detect execution anomalies, and autoencoder model on hardware

performance counters to detect performance problems [15]. Be-

cause of the difficulty in obtaining abnormal labels, previous work

typically circumvents this by training only on normal data, hoping

to detect unforeseen anomalies that do not follow the learned nor-

mal pattern. However, it is possible that the training data is noisy,

or new patterns emerge in detection, such that when the trained

model is being used in detection, false positives or false negatives

may appear.

Consider the following scenario. The training data may contain

two instances: ssh→ program→ exit→ CPU-high and ssh→ game
→ exit→ cpu-high. A zero-positive model trained on this is possible

to learn ssh→ ⋆→ exit→ CPU-high as being a normal sequence,

where ⋆ indicates an arbitrary event. However, while using this

model for anomaly detection, it is possible to encounter ssh →
notepad→ exit→ CPU-high, which is further detected as normal.

Because of the incompleteness of the training data, the anomaly

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1284

detection model fails to recognize the suspicious CPU-high activity,

which is possibly due to a non-logged attack. As another example,

if the model is only trained on ssh→ program→ exit→ CPU-high,
it is possible to falsely detect ssh→ game→ exit→ CPU-high as

an anomaly.

In real-world scenarios while using the trained models for anom-

aly detection, there could be system admins reporting false nega-

tives and false positives that the model fails to detect. In this paper,

we focus on the life-long learning issue of such anomaly detection

models, that is, how to incrementally update the model with the

reported false negatives and false positives.

2.2 Problem definition
In this section, we first formalize the zero-positive anomaly detec-

tion problem, and briefly illustrate how generativemachine learning

models can be used to handle this problem.

Problem Definition 1 (Anomaly detection). Consider an
event sequence xt , (1 ≤ t ≤ T) such that each instance is sampled
from a stationary distribution D with a probability of 1 − ϵ , (ϵ ≥ 0

is a small constant). Detect for each followup instance xt (t > T)
whether xt is sampled from the same distribution.

In this definition, the event sequence x1, ...,xT is the training

data. The distribution D defines whether an instance is normal (in

distribution) or an anomaly. The constant ϵ controls the rate that
anomaly can appear in the training data. When ϵ = 0, it means that

the training data does not include anomaly at all.

Previous work on zero-positive anomaly detection [8, 15, 26]

assumes that the training dataset only contains normal data, i.e., ϵ =
0. However, it is possible that human labeling may make occasional

mistakes. In this work, we consider the anomaly detection problem

with noisy data, which means that ϵ > 0 though it is small, but we

do not have the ground truth of which instances are abnormal or

not. This definition is applicable to most real applications.

Distribution assumption. Different applications make different

assumptions on the distribution D so that different machine learn-

ing models can be applied to learn this distribution. In general,

we consider two types of distributions: time-insensitive and time-
sensitive.

Definition 2.1 (Time-insensitive distribution). The value of a time-
sensitive distribution D at any time t is independent to each other.

Its probability mass function is defined by Pr(xt).

Definition 2.2 (Time-sensitive distribution). The value of a time-
sensitive distribution D at time t depends on all past history. The

probability mass function is defined by Pr(xt |xt−1...x1).

Life-long learning. In this work, we consider a special case of

anomaly detection, called life-long anomaly detection. In the defini-

tion of Problem 1, we consider that no labels are provided on the

training set. Learning from such a noisy data is inevitably inaccu-

rate.

In real application scenarios, however, practitioners can manu-

ally examine a few suspicious examples to provide their labels. In

this work, we are primarily interested in whether we can signifi-

cantly improve the accuracy in such a case.

Problem Definition 2 (Life-long Anomaly detection). Con-
sider an event sequence xt , (1 ≤ t ≤ T) such that each instance is
sampled from a stationary distribution D with a probability of 1 − ϵ ,
(ϵ ≥ 0 is a small constant). In addition, we have a set of n pairs (ti , li),
such that 1 ≤ ti ≤ T and li ∈ {−1,+1}. We know li is negative if xti
is sampled from D, and li is positive if not. Detect for each followup
instance xt (t > T) whether xt is sampled from the same distribution.

Note that manual inspection is a costly operation; thus, the

total number of labeled pairs, i.e., n, must be small. Note that the

additional data is most likely to be wrongly labeled by the deployed

model. We refer to a pair (ti , li) with li = +1 as a false negatives;
and false positive for li = −1 to emphasize this fact. Although the

focus of this paper is on false negatives, our framework is generic

to handle both false negatives and false positives.

2.3 A theoretical framework for existing
machine learning-based anomaly detection

In this section, we introduce a generic framework to describe ma-

chine learning-based anomaly detection approaches for Problem 1

using generative models. We will then explain recent works using

deep learning models for anomaly detection to achieve the state-of-

the-art results, and show that they can be modeled in the generic

framework. In the end, we will explain how to train the models.

2.3.1 Anomaly detection using a generative model. It is easy to see

that if we can learn the distribution (its probability mass function)

under an event sequence, we can apply it to easily detect an anomaly.

For example, given a new instance xt for a time-sensitive distribu-

tion, we can simply check if Pr (xt |xt−1...x1) > τ for a threshold τ
to determine whether xt is an anomaly.

Therefore, almost all anomaly detection algorithms rely on a

class of machine learning models called generative models [27]. A
generative model typically considers two classes of random vari-

ables, i.e., observable variables X (e.g., events) and hidden variables

H . It assumes that the joint probability Pr(X ,H) is modeled by

a function fθ (X ,H), which is parameterized by θ . Thus, we can

obtain the marginal probability of X as

Pr(X) =

∫
h
fθ (X ,H = h) (1)

The learning algorithms search for a set of parametersθ tomaximize

the likelihood or optimize its equivalent transformation:

θ⋆ = argmax
θ

∏
xt

Pr(X = xt)

= argmax
θ

∏
xt

∫
h
fθ (X = xt ,H = h) (2)

Using such a model, given a new instance x (i.e., x1...xt in the

time-sensitive case, or xt in the time insensitive case), we can com-

pute Pr(X = x) using (1) and check whether it is above a threshold

τ . There have been various generative models used for anomaly de-

tection, such as Gaussian mixture model [48], Principal Component

Analysis [18], Long Short-Term Memory [8], and autoencoder [31].

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1285

2.3.2 Deep learning models. We now explain two deep learning

models, namely long short-term memory and autoencoder, and

how they are used for anomaly detection in recent literature.

Long short-termmemory (LSTM). LSTM [17] is a type of recur-
rent neural network (RNN) to handle sequential data. LSTM has

achieved the state-of-the-art on various sequence-based applica-

tions such as speech recognition [16].

In general, a RNN computes an embedding ht (i.e., the hidden
states) for a prefix of a sequence x1...xt . We use ht = ϕ(x1...xt) to
denote this embedding relationship. A RNN models the mapping

ϕ as an incremental computation: ht+1 = fθ (ht ,xt+1) parameter-

ized by θ . In addition, a RNN models the conditional probability

Pr(xt+1 |ht) as a function дρ (ht ,xt+1) parameterized by ρ. Different
RNN models differ in their concrete choices of the functions f and

д. We refer the readers to [17] for more details.

To apply LSTM for anomaly detection at time t , we can compute

ht−1 = fθ (ht−2,xt−1) (3)

Pr(xt |x1...xt−1) = дρ (ht−1,xt) (4)

where (3) can be recursively computed at each time point t . There
are several ways to use Pr(xt |x1...xt−1) computed by (4) to detect

if xt is abnormal. One way (e.g., [8]) is to compare the probabil-

ity against a pre-determined threshold τ as discussed above (see

Figure 1 for example).

If the event space is continuous, an alternative way (e.g., [25]) is

to use this probability density function to predict the next value x⋆t
(i.e., as the one maximizing Pr(x⋆t |x1...xt−1)); and compare whether

xt deviates from x⋆t too much (see Figure 2 for example).

CBAC ?

Anomaly
detection model

Time series data

Model
input

Prediction:
{D:0.8; A:0.2; B:0; C:0; …}

Compare

D? normal; A? normal;
B? abnormal; …

!"##$%&ℎ()&*#+

Figure 1: An example of LSTM-based anomaly detection on
discrete event space. Given a history sequence of C, A, B, C,
LSTM computes the probability of the next events as {D: 0.8,
A: 0.2, B: 0, ...}, and τ = 0.1%. If the next event (i.e., labeled with
“?") is D or A, then its probability (80% or 20% is above the
threshold, and thus it is normal. Otherwise, the probability
is 0%, (since the summation of all probability is 100%) and the
event is detected as abnormal.

One benefit of LSTM is that it can automatically learn to forget

non-essential events in a sequence. Therefore, it can effectively

handle truncated data (i.e., the model runs from the middle of the

event sequence) and noisy data (i.e., anomaly in the training data).

In this work, we choose LSTM as the default model to time-sensitive

distribution.

Autoencoder.When the events are independent in time, we do not

need to consider the history x1...xt−1 when examining xt . In this

Time
dimension

distance>Threshold?Training
period

LSTM history inputvalue
LSTM prediction sequence

System data
sequence

Figure 2: An example of LSTM-based anomaly detection on
continuous event space. Suppose the network traffic of a
website roughly follows the shape of a sine wave. LSTM
model could learn this trend, and forecast the next value
based on it. For example, given a history sequence of 1.2, 1.8,
2. 1.8, LSTM model is possible to predict 1.2 as the next data
point. To check if the real system generated next data point
(e.g., 0.2) is normal, we can compute the distance between
this value and the predicted one. If the distance is larger
than a threshold, we detect it as abnormal.

case, an Autoencoder [14, 26] is an effective deep learning model

for this task.

An autoencoder consists of an encoder ϕ and a decoder φ; both
are parameterized functions. The encoder maps an input x into

a hidden state h = ϕ(x), and the decoder maps h into another

instance x ′ = φ(x) in the input space. As a generative model, the

joint probability Pr(x ,h) can be modeled as

Pr(X = x) ∝ exp(−||x − φ(ϕ(x))| |2/2) (5)

In (5), φ(ϕ(x)) is the output of the autoencoder for input x . This
is illustrated in Figure 3. It is easy to see that we can check whether

the distance between the output and input, i.e., | |x − φ(ϕ(x))| |2,
is smaller than a threshold, to detect if the event is normal (i.e.,

Prob(X = x) is large enough).

En
co
de

r

De
co
de

r
Input

(dimension=d)
Intermediate
(dimension<<d)

Output
(dimension=d)

Learning goal: minimize the error between input and output

Figure 3: Autoencoder architecture.

2.3.3 Training models. So far, we discuss the models in an abstract

way. Now, we provide more details for training a model so that the

following discussions of our new approach can make sense.

To mathematically manipulate an event sequence, we encode

each event into a numerical vector. For an event with continuous

value, they can serve as a dimension of the vector directly. For

an event with discrete value, we can encode them using so called

one-hot-encoding. That is, given a value x ∈ 1, ...,N , we encode it

as a N -dimension vectorv , such thatvi = 1 if x = i , andvi = 0 oth-

erwise. For an event space with a mixture of multiple discrete and

continuous values, we can convert them separately and concatenate

the separate vectors into a bigger one.

To train a model, we need to solve the optimization problem

defined by (1). It is equivalent to minimize −logPr(X). In deep

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1286

learning literature, we typically refer to an equivalent function of

−logPr(X) as the Loss function Lθ (X). For the time-sensitive case

using an RNN model defined by (3-4), this can be defined as

Lθ,ρ (X) =
T∑
t=1
−log

(
дρ (ht−1,xt)

)
(6)

where ht is defined recursively using (3) by setting h0 = 0. For the

autoencoder case, the loss function can be defined as

L(xt) = | |xt − φ(ϕ(xt))| |
2

(7)

Deep learning relies on back-propagation [30] to compute the

gradient of the loss functionwith respect to the parameters∇θLθ (§),

and iteratively update parameters θ according to this gradient. Us-

ing the stochastic gradient decent (SGD)[14] as an example, θ is

updated via

θnew ← θold − η · ∇θLθ (§) (8)

where η is a small constant referred to as learning rate or step size.

Other optimizers (such as Adam [20] and RMSProp [37]) rely on

more complicated formula to update θ based on the gradient. In

later discussions, when it is clear, we may omit the subscription of

θ from the loss function Lθ (x).

3 UNLEARNING FOR UPDATING ANOMALY
DETECTION MODELS

When a machine learning model is deployed in applications, our

goal is to update it with newly reported false positives or false

negatives in a streaming fashion. Existing generative model-based

learning approaches do not naturally support such an update. In

this work, we propose an unlearning framework to handle such

updates. The intuitive idea is that, once we know xt is a false nega-
tives, rather than maximize Pr (xt |x1...xt−1), we want to minimize

this probability. Directly doing it, however, will lead to several is-

sues, such as exploding gradient and catastrophic forgetting. The

unlearning approach implements this idea while not hurting the

performance for other unlabeled data.

Note that false positives, which are normal events, can be handled

in a regular way. In our presentation, we will explain the issues

and our techniques with an emphasis of handling false negatives.

At the same time, however, we will present the algorithm details

in a generic way to handle both false negatives and false positives.

In the following subsections, we will first provide an overview of

our approach as well as the challenges, and then explain the two

important techniques to tackle the challenges.

3.1 Overview of unlearning
We now consider the time-insensitive case. It is straightforward to

extend the idea for the time-sensitive case. To illustrate the idea, we

first consider the labeled set consists of one positive sample (t ,+1),
such that xt is falsely predicted as negative (i.e., normal example).

In this case, we know that

Pr(xt) > τ (9)

for a threshold τ or, equivalently,

L(xt) < τ ′ (10)

for the corresponding threshold τ ′. Our goal is thus to revise the
model to decrease the probability of Pr(xt), or equivalently to in-

crease L(xt). Notice that maximizing this is equivalent to minimize

L
unlearn

(xt) = −L(xt) (11)

Therefore, we can apply the same optimization algorithm for train-

ing to minimize L
unlearn

(xt) by computing its gradient

∇θLunlearn
(xt) = ∇θ

(
− L(xt)

)
= −∇θL(xt)

Therefore, applying the update rule such as (8), we have

θnew ← θ
old
− η · ∇θLunlearn

(xt) = θold + η · ∇θL(xt) (12)

We can now generalize this idea to handle a labeled set S =
{xt , lt } by defining L

unlearn
(S) as follows:

L
unlearn

(S) = −
∑
t
ltL(xt) (13)

while the update rule corresponding to SGD (8) can be captured as

follows:

θnew ← θ
old
+ η

∑
t
lt · ∇θL(xt) (14)

The update rule for other gradient-based optimization algorithms

can be adapted accordingly. Note that the learning process min-

imizes the loss. In contrast, our algorithm tries to maximize the

loss for false negative examples. Therefore, we call our algorithm

unlearning.
One great benefit of our algorithm is that it relies on the same

component as training the model to optimize the unlearning loss

function (13). Hence, our unlearning algorithm is generic and can

be applied to arbitrary optimization-based deep learning models.

While the above idea is straightforward, a direct application of it

suffers two major problems, namely exploding loss and catastrophic
forgetting. We describe them and propose solutions below.

3.2 Handling exploding loss

Challenges. When handling false negatives, the unlearning al-

gorithm essentially maximizes L(xt), or equivalently minimizes

Pr(xt). However, Pr(xt) can be arbitrarily close to 0. In this case,

L(xt) can be arbitrarily large. Therefore, the optimization algo-

rithm may spend all the time to maximize this term even though it

will increase the loss L(xi) for those true negative events xi . As a
result, the learned model may not be effective at all.

Consider the following example. Assume we have a sequence of

x1, ...,xt−1 that are labeled as negative, and xt labeled as positive.

The unlearning loss function is thus

t−1∑
i=1
L(xi) − L(xt) (15)

Without the last term of −L(xt), minimizing the objective will

reduce all individual terms L(xi) for i = 1, ..., t − 1. This is because
every term has a lower bound (i.e., 0). Assume the minimal value

of the entire summation is τ ; then we know that each individual

term is also upper bounded by τ as well. In this case, Pr(xi) is lower
bounded (e.g., by exp(−τ)), and thus we can rely on this lower

bound to build a detection model.

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1287

When −L(xt) is included, however, minimizing (15) may only

maximize L(xt), while making L(xi) for any or all i = 1, ..., t
arbitrarily large. In this case, although we make sure the model

predicts the probability Pr(xt) to be arbitrarily close to 0%, the

probability Pr(xi) can also be close to 0% as well, for other i ∈
{1, ..., t − 1}. As a result, the model may simply predict anything

to be abnormal by minimizing the loss function (15).

To tackle the issue caused by exploding loss, we propose two

techniques, namely bounding loss and learning rate shrinking. We

explain them below.

3.2.1 Bounding loss. Clearly, the exploding loss issue is primarily

introduced since the term ltL(xt) in (13) can be arbitrarily small

when lt = −1. Our idea is to provide a lower bound on this term. To

this aim, we revise the term as

ReLU

(
BND − ltL(xt)

)
(16)

Here, ReLU is the rectifier linear unit [14], i.e., ReLU(x) = max(0,x).
BND > 0 is a pre-determined constant, as a hyper-parameter to the

algorithm.

Consider when lt = +1. If L(xt) ≤ BND, then

BND − ltL(xt) ≥ 0

and thus minimizing (16) is equivalent to minimize −ltL(xt) di-
rectly. On the other hand, if L(xt) > BND already, (16) is always 0,

i.e., the global minimum of (16).

When lt = −1, on the other hand, we know that L(xt) is lower
bounded, and thus we can always choose BND so that BND +
L(xt) ≥ 0. In this case, minimizing (16) is equivalent to minimize

L(xt) as in (13) directly.

The final unlearning loss function is thus revised as

L
unlearn

(S) =
∑
t

ReLU

(
BND − ltL(xt)

)
(17)

Another reason we choose to wrap a ReLU operation around

is because it works compatibly with the back-propagation algo-

rithm which computes the gradient, and its gradient computation

is implemented in all major deep learning frameworks. Therefore,

although we revise the loss function, we can still make sure that our

approach is generic enough to be applied to all deep learning-based

anomaly detection algorithms.

Choosing the bound BND. One remaining issue is on how to

choose BND. If it is chosen to be too large, (16) will not serve its

design goal. If it is chosen to be too small, the corresponding loss

function may not serve its goal to make the model unlearn the false

negative.

One straightforward idea is to choose BND = τ ′, where τ ′ is
the threshold defined in (10). In doing so, once L(xt) > τ , the
unlearning algorithm knows to stop. However, this simple idea has

the problem that while the optimization algorithm minimizes the

overall objective (17), it may stop at somewhere close to the local

minimum of (16), while the term (16) is still positive. In this case,

the model will still predict the false negative event as negative.

A practical approach is to set BND to be slightly higher than τ ′.
In fact, in our evaluation, we find that setting BND = 2τ ′ works
well to solve this issue.

3.2.2 Learning rate shrinking. Choosing a proper learning rate is
a practical question for all gradient-based optimization problems.

In the standard minimization problem, the gradient size of the loss

function | |∇θL|| will get smaller as the algorithm approaches a

local minimum.

In our problem, however, we want to maximizeL(xt); as a result,
the gradient size may increase significantly after a few iterations,

and using the same magnitude of the learning rate as the training

algorithm will soon decrease the model’s performance, even we

bound the maximizing term with BND. This scenario is illustrated

in Figure 4(a). There have been several algorithms such as RM-

SProp [37] and Adam [20] proposed to normalize the gradient size.

However, our evaluation (see Table 7 in Section 4.3.2) shows that

they cannot mitigate this issue.

Loss

!

"#$ Loss

!optimal

"#$

(a) With a maximum bound

Loss

!

"#$ Loss

!optimal

"#$

(b) Controlled learning rate

Figure 4: Gradient ascent for unlearning.

To mitigate this issue, we need to significantly shrink the learn-

ing rate. In our evaluation, we find that choosing a learning rate at

the scale of 1% of the initial learning rate used for training can ef-

fectively unlearn the given instance without causing drastic change

(e.g., introducing significantly more false positives) for normal data.

Also, to make the learning procedure more effective, we evaluate

L(xt) after each iteration of gradient-based update, and stop as

soon as it surpasses the preset bound BND. Figure 4 illustrates this
process.

3.3 Preventing catastrophic forgetting

Challenges. In the lifelong learning scenario, when new labeled

data is observed, the model is updated incrementally. Therefore,

later update may overwrite the model to make it forget what has
been learned in the past. In the deep learning literature, this is

referred to as catastrophic forgetting [21].

One easy way to handle the catastrophic forgetting is that in each

model update, all past data is put into the training set to compute

for the update. Clearly, this approach is not practical, since the

training set size is ever growing which makes model updating time

inevitably long. In this work, we develop a technique so as to update

the model with only a small set of examples. The basic idea is to

keep the updated model “close" to the original model so that their

performances on previously trained data are close as well.

Solution. Our idea is to update the parameters, from its old value

θ⋆ to its new value θ , so that their performance on old data does not

change too much. A straightforward idea is to add a regularization

term into the unlearning loss to penalize if the model differs too

much:

L(xt) = ReLU

(
BND − ltL(xt)

)
+
λ

2

· | |θ − θ⋆ | |2 (18)

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1288

where λ is a hyper-parameter to control the regularization term.

We call λ regularization weight. In our evaluation, however, we find

this loss function will restrain the model from unlearning the new

false negatives, no matter how we choose λ.
To mitigate this issue, we relax the regularization in the way

so that unimportant parameters for previous examples have more

freedom to move. To achieve this, we revise (18) as follows

L(xt) = ReLU

(
BND − ltL(xt)

)
+
λ

2

∑
i
wi (θi − θ

⋆
i)

2
(19)

where wi is a positive constant, θi indicates the i-th parameter,

and i iterates over all parameters. This generalized form allows the

regularization term to take weight in front of (θi − θ
⋆
i)

2
. Note that

(18) is just a specialized form of (19) by taking eachwi = 1.

In general, we want to assignwi to be large if changing θ⋆i will

cause more catastrophic forgetting, so that (θi − θ
⋆
i)

2
can be small

when optimizing wi (θi − θ⋆i)
2
. Thus, we want to measure how

likely changing θ⋆i will cause more catastrophic forgetting.

To this aim, we maintain an important memory set Mt . This is a

small set of labeled data that we want the model to remember at

time t . Notice that this set is disjoint with the new labeled data that

our unlearning algorithm wants to update at time t .
The weightwi can be computed as

wi =
1

|Mt |

∑
x ∈Mt

(
∂L(x)

∂θi

)
2

(20)

Intuitively, this weightwi is proportional to the square of the partial

gradient of ∂L/∂θi , which measures how much the loss changes if

we move θ⋆i . Clearly, if the loss does not change much (i.e., close to

0), it is unlikely that changing θ⋆i will cause catastrophic forgetting,

and thus we can assign a smaller weight forwi to allow (θi − θ
⋆
i)

2

to be bigger. In our evaluation, we will demonstrate that such a

rule can effectively mitigate the catastrophic forgetting issue while

achieving the goal of unlearning (see Table 9 in Section 4.3.3).

Maintaining the important memory set. The remaining ques-

tion is how to maintain the important memory set so that (1) it can

be small enough to make the algorithm efficient; and (2) it contains

enough important data.

To this end, we constitute the important memory set with two

components. The first component is a random sub-sample of the val-

idation set (i.e., a small set held out from the optimization algorithm

during training to validate whether a model has achieved a good

performance) used for training. We can re-sample this set at each

iteration to achieve a good coverage of the entire set while keeping

it small. The second component includes all manually labeled data

in the past. During detection, once the model is updated with a new

labeled data, the new data will be added to the important memory

set. Note that we expect the second component to be small, so the

whole important memory set can remain small over time.

4 EVALUATION
In this section, we evaluate the performance of the proposed lifelong

learning mechanism, with two popular deep learning architectures -

LSTM and autoencoder, and three real-world tasks: Hadoop system

log anomaly detection, Yahoo network traffic anomaly detection,

and credit card fraud detection.

We first perform an end-to-end evaluation on all tasks to show

the effectiveness of the proposed technique and its wide applicabil-

ity. In particular, we show that our approach is able to significantly

reduce the number of false positives and false negatives, on different

security data formats with different deep learning models. Further,

we conduct experiments to systematically study the influence of

different hyperparameters and the improvements brought by each

sub-step in the incremental updating procedure.

4.1 Experiment setup
4.1.1 Datasets. In correspondence to the common security related

data formats introduced in Section 2.1, the datasets we cover in

evaluation include both discrete and continuous data, where the

time dimension may or may not be useful. The dataset statistics are

summarized in Table 1, and detailed as below.

Dataset type Train

Test

normal abnormal

HDFS log [40] 4,855 553,366 16,838

Yahoo network traffic [45] 168 1499 13

Credit card transactions [19] 56,856 227,846 387

Table 1: Dataset statistics.

Hadoop file system (HDFS) log dataset. Available in [40], the

HDFS log dataset is generated through runningHadoopmap-reduce

jobs for 48 hours on 203 Amazon EC2 nodes. It contains various

types of anomalies labeled by domain experts, such as "Write ex-

ception client give up" and "Receive block exception", details of

which could be found in [44]. This dataset contains over 11 mil-

lion log entries, where each log has a block identifier such as

blk_175691478784117391. The log dataset could be further grouped

into 575, 059 block sessions by the block identifier each log has.

Different blocks could be understood as concurrent threads, while

the logs having the same block identifier are executed sequentially.

Note that the labels are only provided at the block session level,

i.e., each normal/abnormal label is associated with a block identi-

fier, rather than a log entry. Over the past decade this log dataset

has been extensively used for research in system log parsing and

anomaly detection [7, 8, 24, 44]. The standard practice is to first

map each log entry (e.g., “Transaction A finished.”) into the corre-

sponding log printing statement that prints out this log message

(e.g., LOG.info(“Transaction %s finished.”, ...). We could use a discrete

key to represent each log printing statement, and the vocabulary

set is simply the number of log printing statements in the source

code. With that, the sequences of system log messages are parsed

to sequences of discrete log keys, which further anomaly detec-

tion could be performed on. The state-of-the-art anomaly detection

results on this dataset are achieved by DeepLog [8], which lever-

ages a LSTM-based neural network for anomaly detection. As in

DeepLog [8], our training dataset contains 4, 855 normal block ses-

sions, while the test dataset includes 553, 366 normal sessions and

16, 838 abnormal sessions. For detection, we say a log session is

detected as normal if each log entry in this session is detected as

normal; and abnormal if at least one log entry in this session is

detected as abnormal.

Yahoo network traffic dataset. This dataset includes real-world

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1289

internet traffic data by Yahoo, which could be requested following

the instructions in [45]. Each data point is a multi-dimensional

measurement of traffic received by Yahoo services at a certain time

point, which includes timestamp, value, seasonality, and etc.. The

anomalies in the dataset have been manually labeled. We use this

dataset as a continuous time series sequence data to validate our

technique. Roughly the first 10% of the normal time series data are

selected for training, and the rest are used as test data for anomaly

detection, which contain 1, 499 normal data points and 13 abnormal

data points, as shown in Table 1.

Credit card transaction dataset.This dataset is downloaded from
Kaggle [19], which contains credit card transactions by European

cardholders in September 2013. For purposes such as anonymity,

this dataset only preserved the original “Time” and “Amount” fea-

tures, while transformed all others using principal component anal-

ysis (PCA) in the original credit card transaction records. Although

the dataset contains a feature “Time”, different transaction records

do not necessarily correlate in time dimension, since the transac-

tions are made by different people. Although the purchasing history

for a single person could be helpful to infer a person’s social be-

havior patterns and further help to do fraud detection, the dataset

prevents us from grouping transaction records by account holders

because of anonymity etc.. As a result, we treat each transaction

record as a standalone data point, and entirely depend on that for

anomaly detection, without the data points before or after. The

entire dataset has 492 frauds out of 284,807 transactions, with 30

features for each. Following [38], we randomly select 20% of the

data, drop the abnormal records and use the rest 56, 856 for training.

The rest 80% dataset are used for anomaly detection, which contains

227, 846 normal records and 387 abnormal ones.

4.1.2 Models and updating details. We choose LSTM to handle

time-sensitive data, and autoencoder to handle time-insensitive

data. To evaluate the effectiveness of the proposed approach, for

each dataset and deep learning architecture being evaluated on,

we first train an anomaly detection model on training data until it

gets the finest anomaly detection results on test dataset. We refer

to this initially trained model as BASELINE, and the model being

incrementally updated as UNLEARN. Most previous works would

simply use BASELINE for anomaly detection with real-time data

points, and some are incorporated with naive continuous training

using new normal data [8, 26]. However, none of the previous

works are able to incrementally update the model with reported

false negatives, or take actions to prevent forgetting of previously

updated instances.

To show the improvement of the proposed incremental updating

mechanism over initially trained model, we use BASELINE as a

baseline, and a starting point for incremental updating in detection.

We assume there are domain expert feedback on whether a data

point is correctly detected, and use the feedback to continuously

improve our model. A false negative feedback indicates that an

anomalous data point is detected as normal, which we need to un-

learn from the model; while a false positive indicates that a normal

data point is not being properly learned by the model previously,

and will be used for incremental relearning.

For all experiments, we assume a real-world data streaming sce-

nario where the model makes a decision on each newly generated

data point. We simulate the data stream using the test data. Each

sample in the test data arrives at the server by their timestamp,

and our server makes a decision on whether or not they are mali-

cious. We also assume a domain expert will report if a decision is

wrong, which is used to update the model immediately. The model

is improved overtime and the wrong decisions are accumulated

progressively as the number of false positives/negatives.

4.1.3 Evaluation criteria. Our goal of incremental updating is to

reduce both false positives and false negatives. Therefore, we use

the total number of false positives and false negatives as the eval-

uation metrics, which are denoted as #FP and #FN respectively.

Unless otherwise mentioned, we count the number of #FP and #FN
in a streaming fashion as well: when a new data point from the

test data is seen in the stream, we increment the number of #FP or

#FN if the domain expert reports our decision is wrong. Intuitively,

if the proposed mechanism is able to effectively unlearn/relearn

a data point that is reported to be falsely labeled, the model will

not make the same mistake in future when encountering similar

data points, so the total #FP and #FN will be reduced. Moreover,

smaller #FP and #FN indicate more false positives and false nega-

tives being reduced, and thus the more effective of the method. In

some experiments F-1 score is also used as an overall measurement,

the calculation of which could be found in [41].

4.2 End-to-end performance
In this section, we focus on presenting the overall effectiveness of

the proposed method. For each dataset in Table 1, we first explain

how anomaly detection is achieved utilizing existing deep neural

networks, and then show the overall improvement with incremental

updating by comparing #FPand #FNmetrics.

4.2.1 LSTM anomaly detection on discrete sequence data. As ex-
plained in Section 4.1.1, HDFS log dataset is first parsed into a

sequence of log keys, e.g., C, A, B, C, where C may represent a log

entry printed by code LOG.info(“Transaction %s finished.”, ...). Also,
time dimension matters in the resulted discrete sequence data, since

the ordering of system logs reveals the source code execution paths.

Our baseline model is DeepLog, which is an anomaly detection

model that achieves state-of-the-art anomaly detection results on

HDFS dataset. The anomaly detection method on log key sequence

is as described in Section 2.3, which utilizes a LSTMmodel, to take a

fixed length of history key sequence as input, and output a probabil-

ity distribution on the next key that may appear. A data point (i.e.,

a log key) is detected as abnormal if it has a predicted probability

less than some threshold. Consequently, a false negative means that

an abnormal log key has a predicted probability higher than the

threshold. As a result, our goal of unlearning would be to reduce

the predicted probability for the reported false negatives given its

history input, and relearning is to increase the probability of the

reported false positives.

Figure 5(a) shows the comparison of the initially trained model

with and without incremental updating. Note that there are two y
axes with different scales, where the left one indicates the number

of false positives #FP , and the right axis shows the number of false

negatives #FN . We select three different thresholds to showcase

the effectiveness of our method. For BASELINE, #FPgrows with

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1290

10−5 10−4 10−3
Threshold

0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r o

f F
P

(#
FP

)

877
1268

2692

217 362
610

#FP (BASELINE) #FP (UNLEARN)

0

200

400

600

800

1000

1200

nu
m

be
r o

f F
N

(#
FN

)

922

575
430

216
151 122

#FN (BASELINE) #FN (UNLEARN)

(a) HDFS log

0.1 0.2 0.3
Threshold

0

100

200

300

400

500

600

700

nu
m

be
r o

f F
P

(#
FP

) 538

180

63

200

111
43

#FP (BASELINE) #FP (UNLEARN)

0
2
4
6
8
10
12
14
16

nu
m

be
r o

f F
N

(#
FN

)

5

9
10

7
8 8

#FN (BASELINE) #FN (UNLEARN)

(b) Yahoo network traffic

0.3 0.6 1
Threshold

100

101

102

103

104

105

106

nu
m

be
r o

f F
P

(#
FP

) 56800

1 1

71
27 32

#FP (BASELINE) #FP (UNLEARN)

0

20

40

60

80

100

120

140

nu
m

be
r o

f F
N

(#
FN

)

1

96 98

20 20 20

#FN (BASELINE) #FN (UNLEARN)

(c) Credit card transaction

Figure 5: Comparison of #FPand #FNbetween BASELINE and UNLEARN.

the increase of the thresholds, along with a decrease on #FN . In

all cases, the UNLEARN with online incremental update is able to

significantly reduce both #FPand #FN , compared with BASELINE.

4.2.2 LSTM anomaly detection on continuous sequence data. The
Yahoo network traffic dataset introduced in Section 4.1.1 and Ta-

ble 1 represents a continuous time series dataset. Each data point

has 7 numerical features, and the history traffic trends could help

to forecast the future ones. Note that the dataset needs to be scaled

to prevent learning bias on value range, and we achieve it by sim-

ply dividing each value using the max value in the corresponding

dimension. For this task, LSTMmodels could be leveraged for anom-

aly detection, by checking the error between the real data point

and the forecasted one given its time sequence history [25], which

we use as BASELINE. The loss function used for model training is

mean squared error loss. Meanwhile, the error between the real

data point and the model predicted one is also measured by mean

squared error, and compared with a threshold to test if the real data

point is an anomaly. Consequently, as illustrated in Section 3, the

incremental unlearning procedure with given false negatives would

be to increase the loss/error between the actual data point and the

model prediction, while incremental relearning being the opposite.

The evaluation and comparison results could be found in Fig-

ure 5(b). For this dataset, the number of false negatives is extremely

low, so false negatives are not unlearned as often. Also, the few

false negatives have different types, for example, one in upward

trend and another in downward trend in the time series data, so

unlearning one does not affect much of another. As a result, the

unlearning effect shown in Figure 5(b) is not as significant com-

pared to previous HDFS dataset. Nevertheless, we show that, with

three different thresholds, UNLEARN is able to evidently reduce

the number of false positives.

4.2.3 Autoencoder anomaly detection on non-time series data. Un-
like the datasets used in previous two experiments, the time dimen-

sion in the credit card transaction dataset presented in Section 4.1.1

is not necessarily useful for fraud detection, since each transaction

record is made by a different person, and it’s not possible to group

transactions by card holders. Instead, we could simply use the 30

features of each transaction record for fraud detection of that record.

More specifically, each transaction record is represented by a vector

of 30 dimensions, and anomaly detection could be performed in the

vector space to detect the anomalous vectors. Similar to the Yahoo

network traffic dataset, each dimension is scaled through dividing

each value by the max one in that dimension. Autoencoder as pre-

sented in Section 2.3 has been shown effective on this dataset [38],

which utilizes normal transaction data to train a model, finds a

desirable threshold, and detects anomalies by checking if the input-

output error exceeds the threshold for each test data point. We use

the implementation in [38] as the baseline model, and incrementally

update it with new false positives and false negatives, to improve

its performance.

The evaluation results are shown in Figure 3. Note that the left y
axis indicating the number of false positives is in log scale. For this

dataset, the error scores of normal data and abnormal data are pretty

close. As a result, the numbers of false positives and false negatives

differ significantly with the presence of different thresholds. In an

extreme case where 1/4 of the test data are detected as anomalies

(when threshold 0.3), UNLEARN is able to reduce almost all false

positives (close to 99.9%), and introduce only 19 false negatives.

For the other two thresholds, UNLEARN reduces most of the false

negatives, with few false positives introduced.

0h 10h 20h 30h 40h 48h(total)
Time (h: hours)

0

200

400

600

800

1000

1200

1400

1600

1800

To
ta

l n
um

be
r o

f F
Ps

 a
nd

 F
Ns

1630

443 453 392
225 189

#FP
#FN

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

F-
1

sc
or

e

F-1 score

Figure 6: Improvement by UNLEARN overtime (HDFS log).

4.2.4 Improvements by UNLEARN overtime. In this section, we

aim to explore the improvements brought by UNLEARN overtime,

in terms of improving anomaly detection performance on test data.

We use HDFS log dataset considering its large size. We construct

the data stream in the same way as above, but the performance

metric is calculated in a different way. We test each snapshot model

at different time on the full test data to compute the #FP and #FN .

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1291

Here, a snapshotmodel at timeH indicates that themodel is updated

in a streaming fashion, but only test samples with timestamp before

H is used. Note that in previous experiments, each snapshot model
at time H is only used to evaluate the test data right after H . By

doing so, we can have a better understanding how snapshot models’

performance change over time.

Figure 6 shows the results. The x-axis are the snapshot moment,

and the y-axis shows the anomaly detection performance of the up-

dated model. As can be observed, the total number of false positives

and false negatives is much higher when there is no update at all

(x=0). The model could be significantly improved with only a few

updates ((x=10)), and slowly improved as time evolves. Also, the

F-1 score improves from around 94.7% at the beginning, to 99.4% in

the end.

4.2.5 Comparison of UNLEARN with retraining. As previously

mentioned, to update the model with a newly labeled instance,

a naive alternative solution is to retrain the model with both the

new sample and all past training data. In this section, we compare

the performance of UNLEARN with retraining, in terms of both

efficiency and effectiveness.

However, for the anomaly detection models considered in this

paper, only normal data samples could be used for training. As a

result, our baseline retraining model is trained on a dataset that

contains all past training data and all newly identified false positives

in detection, while UNLEARNmodel is updated with newly labeled

false positives and false negatives. Instead of comparing the results

whenever a newly labeled sample appears and a model update

is made, we only do a final comparison. That is, we assume the

last false positive/negative is just reported, so now the retraining

dataset contains all false positives and false negatives identified in

detection as well as the original training dataset, and the UNLEARN
model has finished updating with all newly labeled data. We obtain

both models and apply each on entire test dataset to test the utility.

The running time for retraining is simply the entire training time.

For UNLEARN, we measure the time consumed by each unlearning

and relearning step and show the average.

The results are shown in Table 2. The retraining process took

1736.42 seconds, which is not too long due to the relatively small

training dataset, but is much longer than UNLEARN. Also, since re-
training does not take false negatives into account, the final model

produces more false negatives than BASELINE. Instead, UNLEARN
which is updated with both false positives and false negatives im-

proved BASELINE performance, and is better than retraining.

Threshold Tp = 10
−5

time (seconds) #FP #FN F-1 score

BASELINE N/A 877 922 0.947

retraining 1736.42 21 2236 0.928

UNLEARN 1.12 157 32 0.994

Table 2: Comparison between UNLEARN and retraining (HDFS log).

4.2.6 Comparison of UNLEARN with evolving clustering approach.
Before the popularity of deep learning, traditional methods such as

clustering [43] have been extensively used for anomaly detection [4,

9]. In particular, DBSCAN [10] is a density-based clustering method

which groups nearby points into the same cluster recursively, and

identifies small clusters having points lower than a threshold as

outliers.

To deal with evolving data streams where clusters need to be

adapted to new data points in a streaming fashion, multiple im-

provements have been proposed such as CluStream [1] and Den-

Stream [2], which are based on k-means and DBSCAN respec-

tively [32]. Specifically, DenStream is an advancement over CluS-

tream, and is able to discover new clusters with arbitrary shapes

and identify outliers in an evolving data stream.

Although deep learning has outperformed traditional machine

learning in many tasks, there haven’t been many related works

comparing the streaming versions of the two. In this section, we aim

to compare the anomaly detection performance of DenStream and

UNLEARN, as well as their base non-streaming versions, i.e., DB-

SCAN and autoencoder. We choose autoencoder to be the baseline

for deep learning based anomaly detection instead of LSTM models,

because the input data format it accepts is similar to clustering.

Dataset. For the datasets, wewere not able to find publicly available
datasets used in the streaming clustering papers [1, 2], and we

found that the clustering performance on our credit card transaction

dataset is extremely poor (F-1 score close to 0), which may not be

suitable for clustering methods. To amend this, we use the banknote

image dataset [13] which is claimed to be suitable for clustering

based anomaly detection. The data are extracted from images taken

from genuine and forged banknote-like specimens. The features for

each image include variance, skewness and curtosis of the wavelet

transforms of the images. There are totally 1372 images, of which

600 are fake. The train-test split statistics for each method is shown

in Table 3. DenStream, autoencoder and UNLEARN all need initial

normal data points to either form base clusters, or train an initial

detection model. DBSCAN is an unsupervised approach which does

not need training data, but we make sure that the test dataset for

each method is the same for fair comparison.

The results of the four methods are shown in Table 4. For each

method, we explore the hyper-parameters and report the best per-

formed ones. As noted in the table, DenStream effectively improves

the anomaly detection performance (F-1 score) over DBSCAN. The

baseline deep learning alternative is comparable to DenStream,

while its streaming version UNLEARN performs the best among all

methods.

Algorithm Train

Test

normal abnormal

DBSCAN N/A 586 600

DenStream/Autoencoder/UNLEARN 146 586 600

Table 3: Banknote dataset statistics.

4.3 Sub-components analysis
In this section, we divide the steps used in incremental updating

and illustrate how each step helps to effectively unlearn/relearn

the given instances, and more importantly, in a controlled manner.

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1292

Clustering Autoencoder

DBSCAN DenStream BASELINE UNLEARN
#FP 20 610 43 122

#FN 535 300 383 0

F-1 score 0.402 0.611 0.624 0.882

Table 4: Comparison between UNLEARN and evolving clus-
tering on Banknote dataset.

4.3.1 The effectiveness of loss bound BND. In this section, we show
the necessity of applying a maximum loss bound BND for unlearn-

ing, and how it could potentially mitigate the explosive increase of

false positives.

We first conduct a set of experiments to compare the system

performance with different BND values. In these experiments, we

only perform unlearning with given false negatives, but no action
is taken for false positives. For each BND value, we analyze the

number of false negatives being reduced and the number of false

positives being incurred. An overly low BND value would restrain

the unlearning of false negatives, while a BND value that is too

high may explosively increase false positives. An appropriate BND
value should be able to significantly reduce false negatives without

incurring too many new false positives. The results are shown in

Table 5. As in the table, the larger BND is, the more effective of the

false negative unlearning, but the more false positives may occur.

Threshold Tp = 10
−5

BASELINE
UNLEARN with only unlearning (BND=)

5 8 10 12 15

#FP 877 855 1257 2593 2616 39828

#FN 922 1049 114 8 0 0

Table 5: #FPand #FNchange with different loss bounds BND
for unlearning (HDFS log). Relearning is disabled.

To understand why it happens, we plot the loss change of a

particular instance being unlearned, as well as the average loss of

normal examples in Figure 7. The two experiments plotted in the

two sub-figures have the same learning rate.

The left figure shows the loss change without any bound, while

the right figure indicates the loss change with maximum loss bound

BND applied. Without any bound, the unlearning loss keeps in-

creasing, resulting in a potentially exponential change on average

normal loss. The resulted model could incur significantly more false

positives, because of the loss increase in normal examples.

In the right figure, when maximum loss bound BND is applied,

the loss of the unlearning instance simply increases until BND,
before causing visible effect on average normal loss. Note that a

low BND may terminate the unlearning process of an instance

before it’s fully unlearned (i.e., detected as anomaly), which is

acceptable since it’s better to cause many more false positives with

the unlearning of a single instance.

4.3.2 The influence of learning rate η. As described in Section

3.2.2, the learning rate η has a significant effect on unlearning

progress, especially for cross-entropy loss, where the absolute value

(a) without BND (b) with BND

Figure 7: Comparison of loss change with/out BND applied
(HDFS log).

of gradient could be infinitely large. This set of experiments focus

on evaluating the influence of different η, hoping to suggest the

best practice for finding desirable learning rates.

As in Section 4.3.1, we first conduct experiments to measure the

influence of different learning rates with only incremental unlearn-

ing enabled. Both the number of false negatives and the number

of false positives are being analyzed for each learning rate. Ideally,

the unlearning procedure should reduce as many false negatives as

possible, and incur as few new false positives as possible.

Table 6 shows the number of FPs and FNs for both BASELINE,
and UNLEARN. This is to show the increase of #FPwithout any
relearning step. The learning rate used for training is η = 0.1. As

in Table 6, in all cases, the majority of false negatives are reduced.

#FPhas modest increase when learning rates are appropriate. How-

ever, when the learning rate is big (comparable to what’s used in

training), the increase of #FPcould be disastrous, as shown by the

statistics of η = 10
−2

and η = 10
−1
. Although low learning rate

would generally be safe, it may cause the unlearning progress to

be slow, as indicated in the “Average updates” statistics, which is

the average number of updates for each instance to be successfully

unlearned.

To better understand how the learning rate difference would

affect the loss of normal examples while increasing the loss for

abnormal examples, we further plot the loss change of both the ex-

ample to unlearn, and the average loss of normal examples. Figure 8

shows the result. In the left figure when learning rate is big, the

unlearning loss increases rapidly, along with a sudden change in

average normal loss, causing a big increase in #FP . In comparison,

the right figure shows the result of loss change with a low learning

rate. The loss of the instance to be unlearned increases slowly until

being unlearned, while the average normal loss stays low, without

visible change.

In Table 6, the optimizer being used is gradient descent optimizer,

where the learning rate is consistent in the whole training process.

We also conduct experiments on other optimizers where the learn-

ing rate would automatically decay with the training progress.

Specifically, we choose Adam and RMSProp optimizers in model

training, with an initial learning rate of 10
−3
. As shown in Table 7,

the observations are similar - choosing a learning rate that is 1% of

the training one is safe and moderate for unlearning.

For relearning, the influence of learning rate is smaller, since

the learning goal is to minimize the loss, and the gradient becomes

smaller itself when close to converge. Table 8 shows the increase of

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1293

#FNwhile reducing #FPwith only incremental relearning enabled.

Although relearning is more tolerant to learning rate difference,

small learning rate still provides better performance in terms of

reducing #FPand in the meantime controlling the increase of #FN .

Also, note that the “Average updates” statistics increase when learn-

ing rate becomes larger, which could be due to that the optimal

minimal loss is hard to approach with a big step size.

Threshold Tp = 10
−4

BASELINE
UNLEARN with only unlearning (η=)

2 × 10−4 10
−3

0.01 0.1

#FP 1268 3061 3427 449525 552654

#FN 575 12 5 2 1

Average updates 1.75 1.2 1 1

Table 6: #FPand #FNchange with different learning rates for
unlearning (HDFS log). Relearning is disabled.

(a) η = 10
−1

(b) η = 5 × 10−4

Figure 8: Loss change of the example being unlearned, and
the average loss change of normal examples (HDFS log).

Threshold Tp = 10
−4

BASELINE
Adam (η=) RMSProp (η=)

10
−5

10
−4

10
−3

10
−5

10
−4

10
−3

#FP 1268 2841 8859 552654 5605 181347 552654

#FN 575 25 4 1 9 2 1

Average updates 16.08 5.5 1 8 3.5 1

Table 7: #FPand #FNwith different optimizers and learning
rates for unlearning (HDFS log). Relearning is disabled.

Threshold Tp = 10
−3

BASELINE
UNLEARN with only relearning (η=)
10
−4

10
−3

10
−2

10
−1

#FP 2692 249 140 86 7

#FN 430 1951 2015 2675 2752

Average updates 5.1 1.6 1.6 2.7

Table 8: Number of FPs and FNs with the change of learning
rate for relearning (HDFS log). Unlearning is disabled.

4.3.3 The effectiveness of regularization weight λ. Finally, we evalu-
ate the effect of regularization weight λ, which reflects the amount

of previous information to remember. The larger λ is, the more

previous information to remember, while λ = 0 indicates basic in-

cremental updating without prevention from forgetting of previous

learned/unlearned examples. However, an overly big λ could also

restrain the updating of current examples. The results are shown

in Table 9. Compared with the baseline case when λ = 0, #FPdrops
with increasing λ, showing that fewer previously learned examples

are forgotten. Also, when λ is too big (e.g., 5 × 105), the increase

of #FNand decrease of #FPshows that the unlearning of current

examples is restrained, while more weight is being put on not for-

getting previously learned examples. Nevertheless, Table 9 shows

that a wide range of λ suffices to improve the results.

BASELINE
λ for unlearning

0 5 × 102 5 × 103 5 × 104 5 × 105

#FP 22 162 165 143 95 32

#FN 90 44 43 40 43 79

Table 9: Number of FPs and FNs with the change of regular-
ization weight λ (credit card transaction data).

The importance of applying regularization. To show the im-

portance of applying λ to prevent catastrophic forgetting, we apply

the following three models on training dataset to compare the per-

formance: 1) BASELINE model which is not updated in testing; 2)

UNLEARN model with λ regularization applied; and 3) UNLEARN
model without regularization (λ = 0). Table 10 shows the results.

Note that the training dataset only contains normal samples, so

only false positives are incurred in the process. The BASELINE
model without any update is exactly the same model trained on

the dataset, and thus performs the best. UNLEARN with λ reg-

ularization slightly increased #FPon training dataset. However,

UNLEARN without regularization (λ = 0) may explosively increase

#FP . The comparison results show that applying regularization, i.e.,

the second term in Equation 19 effectively prevents catastrophic

forgetting.

Threshold BASELINE
UNLEARN

λ = 5 × 103 λ = 0 (no regularization)

10
−5

0 4 16

10
−4

4 37 3026

Table 10: #FPon HDFS training dataset.

4.3.4 The influence of important memory setMt . As introduced in

Section 3.3, UNLEARN prevents catastrophic forgetting by limiting

the update on model weights that are important to an important
memory setMt . We vary the portions of the two components inMt ,

namely, a random sub-sample of the validation set used for training,

and the set of all newly labeled samples in testing, to evaluate

the influence of the two components. For this experiment, we use

HDFS dataset. The first component is a 5% hold-out validation

dataset in training which we call as validData, and the second

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1294

component is referred as newData.Mt is composed with α portion

of validData and β portion of newData. Table 11 shows the results
with varying α and β . As can be observed, newly labeled data in

test is more effective in improving the performance on test data,

while combining with valid dataset gives the best performance.

Threshold Tp = 10
−5

BASELINE
#FP #FN α β #FP #FN α β #FP #FN α β #FP #FN
877 922 0 1 331 149 1 0 378 732 1 1 157 32

Table 11: #FPand #FNwithMt = (α ·validData)
⋃
(β ·newData)

(HDFS log).

The importance of using Mt . As in Section 3.3, if not having

Mt , an alternative is to use Equation 18 which simply restrains

the update on all existing model parameters. We compare the up-

dated model performance between using Equation 18 and using

19, on HDFS test dataset. With an anomaly detection threshold of

Tp = 10
−5
, the #FPand #FN for Equation 18 is 162 and 782, but for

Equation 19 is 157 and 32 respectively. Applying memory set and

calculating the weights important to it effectively improves the

unlearning performance.

5 DISCUSSION
A major contribution of our work is a novel approach for unlearn-

ing. Although it is often accompanied with more false positives, we

note that in system anomaly detection, the merit of fewer false neg-

atives in fact worth the cost of more false positives. That is because

reported false positives could be further checked by system admin,

and then fed into the model for incremental learning. However,

a false negative may never be found out, until a more disastrous

event occurs due to the un-discovery of it.

There are previousworks that explore specificmodels like Bayesian

ones to adapt with new data [2, 11], which have also shown effective

in anomaly detection [22, 32]. In contrast, the proposed UNLEARN
scheme is achieved by manipulating the loss functions, which is

a general approach for deep learning based methods that involve

gradient descent steps.

Since the model is being incrementally updated in anomaly de-

tection process, it is natural to think whether an attacker would

try to inject adversarial examples to pollute the model. However,

this is not quite easy for the usage scenario of UNLEARN, where
the newly labeled data for update are proposed by the same party

who uses the model for detection, and thus have no incentive in

breaking the model.

In this paper, we only suggest to use a lower learning rate com-

pared with the one used for training. However, studying optimizers

that could adaptively change the learning rate for incremental

updating where only micro adjustments are needed would be an

interesting research direction to explore.

6 RELATEDWORK
Deep learning, and recurrent neural networks (RNNs) in particular,

have been found to be extremely effective in detecting and predict-

ing events related to security, for example, to identify functions in

code binaries [35]. RNNs and Echo State Networks have also been

used for unsupervised feature extraction, which expresses great

effectiveness for malware detection [29]. Similar to DeepLog [8],

Tiresias [34] uses stacked RNNs to predict the next security event

to happen based on a history of events.

Anomaly detection is an essential component for security. Com-

pared with supervised anomaly detection which requires labeled

anomalies [46], and unsupervised anomaly detection which as-

sumes outliers to be rare [31], zero-positive anomaly detection has

recently gained much interest in that it can fully enjoy the benefits

brought by deep neural networks, while having no assumption

on the anomalies to detect. AutoPerf [15] trains an autoencoder

network utilizing hardware performance counters collected from

normal system execution, to detect hardware performance prob-

lems. Kitsune [26] leverages an ensemble of autoencoders to detect

network anomalies, which also requires training data to be clean

(normal). Previous works have also explored time series dimension

for system anomaly detection, which is important since real-time

system status and actions are inevitably affected by previous system

events. For this series of work, RNNs such as LSTM are extensively

used, because of the ability to model sequence information. Anom-

aly detection on continuous time series data is mostly done by

learning a LSTM model for forecasting, and then compute the error

score by calculating the difference between LSTM-generated data

point and the real system data point [6, 23, 25, 36]. For discrete time

series data [5], DeepLog [8] uses LSTM to train a supervised classi-

fier utilizing normal system log data, to predict the next system log

and compare with the actual system generated one. Similar ideas

could also be applied to system command sequences and function

API call sequences [5]. In summary, recent works on zero-positive

anomaly detection mostly used autoencoder for non-time series

data analysis, and LSTM for time series data analysis, or different

variations of them such as ensembles.

Although many previous works have validated the flexibility

and effectiveness of zero-positive anomaly detection through deep

learning, an essential part that’s not fully studied is the incremental

update of the initially trained models. Since only normal data are

used for training, previous works mentioning incremental update

either use all encountered normal data to update the model [15, 26],

or only utilize false positives [8]. None of the previous works have

mentioned how to update the zero-positive model to deal with

reported false negatives. Moreover, as suggested in Section 4.3.2,

naive incremental learning introduces many false negatives, while

the restraint of which is not explored.

The concept of machine unlearning has been proposed and stud-

ied before. However, we note that the scenarios presented in previ-

ous work significantly differ with the goal of updating zero-positive

anomaly detection models, and thus is hardly possible to be directly

applied. Cao and Yang systematically studied machine unlearning

in [3]. They transfer machine learning from raw data to summation

forms. In terms of unlearning, only the summations involving the

data to forget is recalculated, and the machine learning model is

updated on the new summation forms, which is asymptotically

faster than retraining from raw data. Although this work has its

potential to be extended to deep learning, the method is proposed

for unlearning of the data previously used for training, instead of

unlearning a testing sample. Neural Cleanse [39] also mentioned

the concept of unlearning, to fix a model that is previously trained

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1295

by trojan attack data samples. The proposed method is to retrain

the model with the trojan attack data samples and corresponding

correct labels, hoping to overwrite the attack labels previously used

for training. However, in zero-positive anomaly detection, the al-

ternative correct label for a sample to unlearn may not be known.

Moreover, only replacing the label having maximum predicted prob-

ability does not guarantee to reduce the predicted probability of a

false negative, which is required for it to be detected as abnormal.

Finally, lifelong learning has been previously proposed and stud-

ied for deep learning in general [21, 28, 33]. The problem to solve is

to train the same machine learning model for multiple tasks, which

may not even have the same set of labels, such as digits classifica-

tion and face recognition. For each training task, the corresponding

dataset may be trained over for multiple iterations, unlike our set-

ting which is entirely online incremental updating. Inspired by the

usage of fisher information matrix in [21], we leverage a similar

idea to restrain the parameter change to a small memory set which

contains previously updated examples.

7 CONCLUSION
In this paper, we study the problem of lifelong learning for deep

learning based anomaly detection. We first summarize the gen-

eral problem of zero-positive anomaly detection, and how previous

work address it by utilizing various generative models, for example,

autoencoder models for non-time series data and LSTM models for

time series data. Leveraging the fact that all such models aim to

minimize the loss for normal data in training process, we propose a

new objective function that aims to maximize the loss to unlearn re-

ported abnormal samples. Moreover, we propose to add a maximum

bound to control the loss increase, and applying a regularization

term to prevent catastrophic forgetting while updating the model

with new test samples. The newly proposed loss objective could

also be generalized to the incremental learning of new negative

examples, and similar observations (e.g., shrinked learning rates,

regularization term) are also applicable to incur fewer false nega-

tives. Finally, we use three real-world datasets utilizing different

deep neural architectures for anomaly detection, to show the wide

applicability of our proposed incremental updating technique.

ACKNOWLEDGMENTS
The authors appreciate the valuable comments provided by the

anonymous reviewers. We thank Ruoxi Jia from UC Berkeley and

Idan Amit from Palo Alto Networks for the insightful discussions.

This work was supported by the CLTC (Center for Long-Term

Cybersecurity) at UC Berkeley.

REFERENCES
[1] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. 2003. A frame-

work for clustering evolving data streams. In Proceedings of the 29th international
conference on Very large data bases-Volume 29. VLDB Endowment, 81–92.

[2] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. 2006. Density-based

clustering over an evolving data stream with noise. In Proceedings of the 2006
SIAM international conference on data mining. SIAM, 328–339.

[3] Yinzhi Cao and Junfeng Yang. 2015. Towardsmaking systems forget withmachine

unlearning. In 2015 IEEE Symposium on Security and Privacy. IEEE, 463–480.
[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:

A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.
[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2012. Anomaly detection

for discrete sequences: A survey. IEEE Transactions on Knowledge and Data
Engineering 24, 5 (2012), 823–839.

[6] Sucheta Chauhan and Lovekesh Vig. 2015. Anomaly detection in ECG time

signals via deep long short-term memory networks. In 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA). IEEE, 1–7.

[7] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly

detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1285–1298.

[9] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo.

2002. A geometric framework for unsupervised anomaly detection. In Applica-
tions of data mining in computer security. Springer, 77–101.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise.. In

Kdd, Vol. 96. 226–231.
[11] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learning generative visual models

from few training examples: An incremental bayesian approach tested on 101

object categories. In 2004 Conference on Computer Vision and Pattern Recognition
Workshop. IEEE, 178–178.

[12] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences 3, 4 (1999), 128–135.

[13] Stefan Glock, Eugen Gillich, Johannes Schaede, and Volker Lohweg. 2009. Feature

extraction algorithm for banknote textures based on incomplete shift invariant

wavelet packet transform. In Joint Pattern Recognition Symposium. Springer,

422–431.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[15] Justin Gottschlich, Abdullah Muzahid, et al. 2017. AutoPerf: A Generalized Zero-

Positive Learning System to Detect Software Performance Anomalies. arXiv
preprint arXiv:1709.07536 (2017).

[16] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech

recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 6645–6649.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[18] Ling Huang, XuanLong Nguyen, Minos Garofalakis, Michael I Jordan, Anthony

Joseph, and Nina Taft. 2007. In-network PCA and anomaly detection. In Advances
in Neural Information Processing Systems. 617–624.

[19] Kaggle. 2013. Credit Card Fraud Detection. https://www.kaggle.com/mlg-

ulb/creditcardfraud [Online; accessed 19-April-2019].

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[21] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural

networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[22] Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik Valeur. 2003.

Bayesian event classification for intrusion detection. In 19th Annual Computer
Security Applications Conference, 2003. Proceedings. IEEE, 14–23.

[23] Tae Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, and Stan Zdonik.

2018. Greenhouse: A Zero-Positive Machine Learning System for Time-Series

Anomaly Detection. arXiv preprint arXiv:1801.03168 (2018).
[24] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining

Invariants from Console Logs for System Problem Detection.. In USENIX Annual
Technical Conference. 1–14.

[25] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long

short term memory networks for anomaly detection in time series. In Proceedings.
Presses universitaires de Louvain, 89.

[26] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:

an ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089 (2018).

[27] Andrew Y Ng and Michael I Jordan. 2002. On discriminative vs. generative

classifiers: A comparison of logistic regression and naive bayes. In Advances in
neural information processing systems. 841–848.

[28] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan

Wermter. 2019. Continual lifelong learning with neural networks: A review.

Neural Networks (2019).
[29] Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil

Thomas. 2015. Malware classification with recurrent networks. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
1916–1920.

[30] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. 1988. Learning

representations by back-propagating errors. Cognitive modeling 5, 3 (1988), 1.

[31] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly detection using autoencoders

with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis. ACM, 4.

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1296

http://www.deeplearningbook.org
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

[32] Mahsa Salehi and Lida Rashidi. 2018. A survey on anomaly detection in evolving

data:[with application to forest fire risk prediction. ACM SIGKDD Explorations
Newsletter 20, 1 (2018), 13–23.

[33] Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. 2018. Over-

coming catastrophic forgetting with hard attention to the task. arXiv preprint
arXiv:1801.01423 (2018).

[34] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca Stringhini.

2018. Tiresias: Predicting security events through deep learning. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 592–605.

[35] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing

functions in binaries with neural networks. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 611–626.

[36] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. 2016. Anomaly detection

in automobile control network data with long short-term memory networks.

In 2016 IEEE International Conference on Data Science and Advanced Analytics
(DSAA). IEEE, 130–139.

[37] T. Tieleman and G. Hinton. 2012. Lecture 6.5 - RMSProp, COURSERA: Neural

Networks for Machine Learning. Technical report (2012).
[38] Venelin Valkov. 2017. Credit Card Fraud Detection using Autoencoders in

Keras. https://github.com/curiousily/Credit-Card-Fraud-Detection-using-

Autoencoders-in-Keras/blob/master/fraud_detection.ipynb [Online; accessed

19-April-2019].

[39] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao

Zheng, and Ben Y Zhao. [n.d.]. Neural Cleanse: Identifying and Mitigating Back-

door Attacks in Neural Networks. In Neural Cleanse: Identifying and Mitigating

Backdoor Attacks in Neural Networks. IEEE, 0.
[40] Wei Xu. 2009. HDFS Log Dataset. http://iiis.tsinghua.edu.cn/~weixu/sospdata.

html [Online; accessed 19-April-2019].

[41] Wikipedia contributors. 2019. F1 score — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=F1_score&oldid=911716685. [Online;

accessed 31-August-2019].

[42] Wikipedia contributors. 2019. Zero-day (computing) — Wikipedia, The Free En-

cyclopedia. https://en.wikipedia.org/w/index.php?title=Zero-day_(computing)

&oldid=895202836. [Online; accessed 16-May-2019].

[43] Rui Xu and Donald C Wunsch. 2005. Survey of clustering algorithms. (2005).

[44] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.

Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 117–132.

[45] Yahoo Research. 2015. A Benchmark Dataset for Time Series Anomaly De-

tection. https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-

dataset-for-time-series-anomaly [Online; accessed 19-April-2019].

[46] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechri-

nis, and Hui Zhang. 2016. Automated IT system failure prediction: A deep

learning approach. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 1291–1300.

[47] Chong Zhou and Randy C Paffenroth. 2017. Anomaly detection with robust deep

autoencoders. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 665–674.

[48] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki

Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model for

unsupervised anomaly detection. (2018).

Session 6B: ML Security II CCS ’19, November 11–15, 2019, London, United Kingdom

1297

https://github.com/curiousily/Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras/blob/master/fraud_detection.ipynb
https://github.com/curiousily/Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras/blob/master/fraud_detection.ipynb
http://iiis.tsinghua.edu.cn/~weixu/sospdata.html
http://iiis.tsinghua.edu.cn/~weixu/sospdata.html
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=911716685
https://en.wikipedia.org/w/index.php?title=Zero-day_(computing)&oldid=895202836
https://en.wikipedia.org/w/index.php?title=Zero-day_(computing)&oldid=895202836
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly

	Abstract
	1 Introduction
	2 Life-long anomaly detection
	2.1 Motivation examples
	2.2 Problem definition
	2.3 A theoretical framework for existing machine learning-based anomaly detection

	3 Unlearning for updating anomaly detection models
	3.1 Overview of unlearning
	3.2 Handling exploding loss
	3.3 Preventing catastrophic forgetting

	4 Evaluation
	4.1 Experiment setup
	4.2 End-to-end performance
	4.3 blackSub-components analysis

	5 Discussion
	6 Related work
	7 Conclusion
	Acknowledgments
	References

