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Abstract—In network link prediction, it is possible to hide a target link from being predicted with a small perturbation on network

structure. This observation may be exploited in many real world scenarios, for example, to preserve privacy, or to exploit financial

security. There have been many recent studies to generate adversarial examples to mislead deep learning models on graph data.

However, none of the previous work has considered the dynamic nature of real-world systems. In this work, we present the first study of

adversarial attack on dynamic network link prediction (DNLP). The proposed attack method, namely time-aware gradient attack (TGA),

utilizes the gradient information generated by deep dynamic network embedding (DDNE) across different snapshots to rewire a few

links, so as to make DDNE fail to predict target links. We implement TGA in two ways: One is based on traversal search, namely TGA-

Tra; and the other is simplified with greedy search for efficiency, namely TGA-Gre. We conduct comprehensive experiments which show

the outstanding performance of TGA in attacking DNLP algorithms.

Index Terms—Dynamic network, link prediction, adversarial attack, transaction network, blockchain, deep learning

Ç

1 INTRODUCTION

IN THE era of big data, network analysis emerges as a
powerful tool in various areas, such as recommendation

on e-commerce websites [1], bug detection in software engi-
neering [2], and behavioral analysis in sociology [3]. Exist-
ing algorithms like traditional similarity indices and newly
developed network embedding methods learn structural
features on static networks while most of them ignore the
dynamic nature of real-world systems. The dynamics of net-
works, such as the establishment and dissolution of friend-
ship in online social networks, could help the analysis.
For example, in citation networks, the citations in different
time which reflect the research focus of the authors should
weigh differently in the prediction of future citations.
And dynamic networks are naturally proposed for these
occasions.

Dynamic network analysis, especially link prediction
(DNLP) which we discuss in the paper, mainly focuses on
the linkages status. That is predicting whether a link exists
or not at a certain time based on historical information. For
instance, given a social network, DNLP algorithms predict a
given individual’s relationships with others in the near
future based on his/her historical friend lists. Comparing

with traditional link prediction algorithms, DNLP algo-
rithms could learn the underlying transitions of behavior
patterns while the traditional ones could not. DNLP is gen-
erally performed in two ways: Time-series data analysis
and machine learning-based methods. A representative cat-
egory of the former one is Autoregressive Integrated Mov-
ing Average (ARIMA) [4], [5] related methods which treat
time varying similarity scores as time series to predict
future links. The latter one includes factorization-based
approaches and deep learning models of which the majority
consists of Recurrent Neural Networks (RNNs).

Regardless of their performance, DNLP algorithms may
suffer from adversarial attacks as most machine learning
methods do. The exploitation of adversarial examples may
expose DNLP algorithms to security threats. However,
from another perspective, this property could be useful in
other fields like privacy-preserving. Privacy issues have
aroused wide concern since the data theft of Facebook in
2018. In fact, one can infer private information, such as
romantic relationship or visiting the same restaurant [6], [7],
of target individuals with the help of advanced algorithms
like DNLP. A well designed adversarial example may pro-
tect intimate relationships from being predicted by even the
most advanced DNLP approach, which could provide a
possible solution to privacy protection. The target link could
be hidden by linking the user to someone unfamiliar, or
removing intimate links in historical interactions. A bunch
of works have explored the ways of generating adversarial
examples for graphs in recent years. Adversarial attack
could be classified into three categories:

� White-box Attack: The attacker knows everything of
the model, including training data and the model
parameters.

� Gray-box Attack: The Attacker has limited knowledge
of the model. Usually, the attacker trains a surrogate
model to approximate the information obtained
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from the victim model. And then adversarial exam-
ples are generated according to the surrogate model.

� Black-box Attack: The attacker could acquire nothing
of the model. The attacker could only feed the model
with input data and obtain the output scores or labels.

In this paper, we mainly focus on white-box attack to
investigate the vulnerability of DNLP models. Though
white-box attacks on image and graph both use gradient
information to guide the generation of adversarial exam-
ples, we could only flip the linkage status if we want to
change the graph structure while there is no such limitation
of the attack on images. Most existing researches [8] focus
on generating adversarial graphs to fool Graph Convolu-
tional Network (GCN) [9] and achieve considerable attack
performance. However, few of them involve dynamic net-
works, not even DNLP.

In this paper, we propose a novel adversarial attack tar-
geting DNLP, which we refer as Time-aware Gradient
Attack (TGA), to hide target links from being predicted.
Benefitting from the gradients generated by deep learning
model, i.e., DDNE, TGA is able to find candidate links to be
modified without extensive search, and perform attack at
minimum cost. Considering the dynamics of networks,
TGA compares the gradients on different snapshots sepa-
rately rather than does simple sorting on all snapshots; fur-
thermore, it searches candidate links across iterations to
make full use of the gradients. Overall, our main contribu-
tions are summarized as follows.

� We design TGA to generate adversarial examples
based on the gradients obtained by DDNE. As far as
we know, it is the first work about adversarial
attacks on DNLP.

� We conduct extensive experiments on six real-world
dynamic networks and compare TGA with several
baselines. The results show that TGA achieves the
state-of-the-art attack performance. And a case study
on Ethereum transaction network is carried out to
validate the practicability.

� We vary DNLP model parameters and observe sev-
eral interesting phenomena which could be inspiring
to future research. For example, long-term prediction
is more vulnerable to adversarial attacks; while inte-
grating more historical information can increase the
robustness of DDNE.

For the rest of this paper, we first review related works in
Section 2 and preliminaries in Section 3. Then, we present
the proposed attack details of TGA-Tra and TGA-Gre in
Section 4, and gives the results of the proposed attack meth-
ods as well as the performance under some certain circum-
stances in Section 5. Finally, we conclude the paper with the
prospect of future work in Section 6.

2 RELATED WORK

This section briefly reviews the literature of DNLP algo-
rithms and the related work on adversarial attacks.

DNLP Algorithms. Recently, a temporal restricted Boltz-
mann machine (TRBM) is adopted with additional neigh-
borhood information, namely ctRBM [10], to learn the
dynamics as well as the structural characteristics of

networks. As an extension of ctRBM, GTRBM [11] combines
TRBM and boosting decision tree to model the evolving pat-
tern of each node. RBM deals with temporal networks in a
2-layer neural network and maybe not able to handle the
high dimensional structural features. Besides the RBM-
based methods, recurrent neural networks (RNN), like long
short-term memory (LSTM), plays an important role in
other DNLP algorithms. A stacked LSTM module is applied
inside the autoencoder framework to capture time depen-
dencies of the whole network [12], and a gated recurrent
network (GRU) is used as the encoder which could rela-
tively lower the computational complexity [13]. Goyal et al.
[14] propose dyngraph2vec and its variations which com-
bine multiple LSTM cells in an auto-encoder framework. To
better learn graph structures, GCN-GAN [15] incorporates
GCN with LSTM and the generative adversarial
network (GAN) to generate temporal links. Above
approaches are mostly based on deep learning models, lim-
iting them to the dynamic networks with fixed scale. To
address the problem, Wu et al. [16] propose a similarity
index for node pairs based on node ranking which is able to
deal with the dynamic networks with growing size of
nodes. Instead of dividing a network into snapshots,
CTDNE [17] performs future link prediction on continuous
dynamic network by temporal random walk.

Adversarial Attacks. A bunch of works have explored the
field of adversarial attack on graph data. Community mem-
bership anonymization is realized by connecting the target
user to the one of high centrality [18]. Another method
focuses on disconnecting certain neighbors while adding
links between different communities, with regards to the
centrality of degree, closeness and betweenness [19]. In fact,
community deception can be achieved by only rewiring the
links inner the target community [3]. On the other hand, the
emerging network embedding techniques, such as the
graph convolutional network (GCN) [9], have drawn wide
attention these days. And NETTACK [20], [21] is proposed to
generate adversarial examples with respect to graph struc-
ture and node feature to fool the GCN model. Another gra-
dient-based method called fast gradient attack (FGA) [22]
makes full use of the gradients information to choose candi-
date links that need modification when performing attack.
The above methods are called evasion attacks [20] which
aim to generate adversarial examples to deceive target mod-
els without changing models’ parameters. Z€ugner et al. [23]
apply meta-gradient to achieve training-time attack which
lowers the global accuracy in training process. Not limited
to the manipulation on links, adding fake nodes [24] could
also minimize the classification accuracy of GCN. To
increase the scalability of attack methods, SGA [25] carries
out adversarial attack on a small subgraph consisting of
k-hop neighbors of the target node rather than the whole
network. Though most existing adversarial attacks target at
GCN, some unsupervised embedding methods are also con-
cerned, e.g., Bojchevski et al. [26] analysis the adversarial
vulnerability on random walk-based embedding methods
and Sun et al. [27] propose to use Projected Gradient
Descent (PGD) based attack lower the accuracy of Deep-
Walk [28] and LINE [29] on link prediction task.

Graph adversarial examples are designed not only for
fooling GNNs but also for improving the robustness of the
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models through adversarial training. GraphAT [30] trains a
GCN by additionally minimizing a graph adversarial regu-
larizer to improve the performance and robustness. It adds
perturbations to node features along with the training pro-
cess. In addition, Jin et al. [31] propose to add noise to the
latent node representations to achieve the same goal. Like
the adversarial training methods for image classification
models [32], [33], those focusing on GNNs could only gener-
ate continuous but not discrete perturbations and thus
could not modify the network structure.

As innovative as they are, existing adversarial attack
approaches are still limited to static networks while the net-
works in real world are always time-evolving.

3 PRELIMINARY AND PROBLEM FORMULATION

In this section, we present the definition of DNLP, as well as
the adversarial attacks on it.

3.1 Dynamic Network Link Prediction

A network structure could be represented by G ¼ fV;Eg,
where V ¼ fv1; v2; . . . ; vng denotes the set of network nodes,
and E � V�V represents the set of links. A directed link
from vi pointing to vj is denoted by an ordered pair of nodes
ðvi; vjÞ. In this paper, we focus on the dynamic networks
with fixed node set but temporal links. Such a dynamic net-
work could be modeled as a sequence of graphs
fGt�N; . . . ;Gt�1g, where Gk ¼ fV;Ekg represents the
network’s structure at the kth interval. With this, the defini-
tion of DNLP goes as follows.

� Given a sequence of N graphs S ¼ fAt�N; . . . ;At�1},
where Ak denotes the adjacent matrix of Gk, the task of
dynamic network link prediction is to learn a mapping
S! At, from historical snapshots to future network
structure.

Specifically, DNLP algorithms capture latent spatial fea-
tures and temporal patterns from historical information,
i.e., previous N adjacency matrices, and then are able to
infer the adjacency matrix of next snapshot. A link exists
between vi and vj at time t if the probability P ðAtði; jÞÞ
given by the DNLP algorithm is larger than some threshold.

3.2 Adversarial Attack on DNLP

The idea of the adversarial attack has been extensively
explored in computer vision, which is typically achieved by
adding unnoticeable perturbation to images in order to mis-
lead classifiers. Similarly, adversarial network attack on
DNLP generates adversarial examples by adding or delet-
ing a limited number of links from the original network, so
as to make DNLP algorithms fail to predict target linkages.
Intuitively, the goal of the generated adversarial example is
to minimize the probability of the target link predicted by
the DNLP algorithms, which could be formalized as

minP ðAtði; jÞjŜÞ
subject to Ŝ ¼ Sþ~S;

(1)

where Ŝ denotes the generated adversarial example, and
~S is the perturbation introduced into S, i.e., the amount of

links that need modification. Usually, ~S is small enough
to make the attack unnoticeable.

Different from the attack strategies on static network
algorithms, the chosen links added to or deleted from his-
torical snapshots are associated with temporal information.
One same link on different snapshots may contribute differ-
ently in the prediction of target link, not to mention that the
linkages are time-varying. Therefore, it is crucial to take
time into consideration when designing the attacks.

4 TIME-AWARE GRADIENT ATTACK

In order to generate adversarial dynamic network with opti-
mal link modification scheme, a naive idea is to search
through permutation and combination, which however is
extremely time-consuming. Fortunately, deep learning
based DNLP methods produce abundant information when
making predictions, i.e., the gradients, which may assist
adversarial example generation. It assumes that the attacker
could access every detail of DDNE, including the model
structure and the parameters, indicating that TGA is a
white-box attack method. Here, we first briefly introduce
DDNE and then show how it can help to generate adversar-
ial examples. The framework is shown in Fig. 1. It should be
noted that it does not matter which DNLP model is adopted
here, as long as it can achieve a reasonable performance.

4.1 The Framework of DDNE

DDNE [13] has a dual encoder-decoder structure. A GRU
could be used as the encoder, which reads the input node
sequence both forward and backward, and turns the node
into lower representation. The decoder, which consists of
several fully connected layers, restores the input node from
the extracted features. The original DDNE directly encodes
each snapshot with a GRU, making it unsuitable for process-
ing large-scale network. To make DDNE adapt to larger net-
works, we first encode the network with an embedding layer
which significantly reduces the number of parameters of
DDNE. For a node vi, the encoding process is described as

S ¼ EmbeddingðSÞ;
h
!k

i ¼ GRUðh!k�1
i þ S

!kði :; ÞÞ;
h
 k

i ¼ GRUðh k�1
i þ S

 kði :; ÞÞ;
hk
i ¼ ½h

!k

i ; h
 k

i �; k ¼ ft�N; . . . ; t� 1g;
ci ¼ ½ht�N

i ; . . . ;ht�1
i �;

(2)

where hk
i represents the hidden state of the GRUwhen proc-

essing vi of the kth snapshot, and ci is the concatenation of

all hk
i in time order. hk

i consists of two parts, the forward

one h
!k

i and the reversed one h
 k

i , which are fed with oppo-

site time sequence, S
!ði; :ÞÞ ¼ fAt�Nði; :Þ; . . . ;At�1ði; :Þg and

S
 ði :; ÞÞ ¼ fAt�1ði; :Þ; . . . ;At�Nði; :Þg, respectively. The

decoder is composed of multilayer perceptrons, of which

the complexity may vary according to the scale of datasets.

The decoding process could be formulated as

y
ð1Þ
i ¼ s1ðWð1Þci þ bð1ÞÞ;

y
ðmÞ
i ¼ smðWðm�1Þyðm�1Þi þ bðmÞÞ;m ¼ 2; . . . ;M;

(3)
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where M represents the number of layers in the decoder,
and sm denotes the activation function applied in the mth

decoder layer. Here, sm ¼ ReLUð�Þ whenm < M and sM ¼
sigmoidð�Þ. In the training process, DDNE minimizes objec-
tive function Lall which consists of three parts: An adjusted
L2 loss Ls between predicted snapshot and the true one to
learn the transition pattern, an adjusted L2 loss Lc between
the two embeddings to capture interaction proximity and a
regularization term Lreg to avoid overfitting. And Lall is
defined as

Lall ¼ Ls þ bLc þ gLreg: (4)

Here,Ls adds an additionalweightZði; :Þ toL2 loss in order to
ease the impact of sparsity, with fZði; jÞgnj¼1 ¼ 1 if Stði; jÞ ¼ 0
and fZði; jÞgnj¼1 ¼ a > 1 otherwise.Ls is defined as

Ls ¼ �
Xn

i¼1
Zði; :Þ � ½Atði; :Þ � Âtði; :Þ�2

¼ �
Xn

i¼1

Xn

j¼1
Zði; jÞ½Atði; jÞ � Âtði; jÞ�2:

(5)

On the other hand, Lc imposes Nij, the amount of links
between vi and vj in historical snapshots, to L2 loss. It
addresses the influence of historical connections, and is
defined as

Lc ¼
Xn

u;v¼1
Nij k ci � cj k2: (6)

4.2 Time-Aware Link Gradient

When training DDNE, we minimize Lall through gradient
descent. And in general, the lower Lall is, the better perfor-
mance that DDNE has. After the training process of DDNE
finishes,Lall is dependent on S as the parameters of themodel
are fixed. In adversarial network generation, we can update
Sði; :Þ by taking @Lall=@Sði; :Þ with Sði; :Þ being the variable.
Lall integrates the information of the entire network, which
makes the links that contribute themost in prediction covered
among all links in Sði; :Þ. To find out the most valuable links
in target link prediction, we design Lt to only take the target
link into consideration. Its definition goes as follows:

Lt ¼ �½1� Âtði; jÞ�2; (7)

with Âtði; jÞ equal to P ðAtði; jÞÞ, the probability generated
by DDNE. This can make the time-aware link gradient,
@Lt=@Sði; :Þ, more concentrated when it is applied in target
link attack. The calculation of @Lt=@Sði; :Þ follows the chain
rule and the partial derivative can be obtained by calculat-
ing @fðSði; :ÞÞði; jÞ=@Sði; :Þ with DDNE regarded as f , which
is described as

@Lt
@Sði; :Þ ¼ 2½1� Âtði; jÞ� @Âtði; jÞ

@Sði; :Þ

¼ 2½1� Âtði; jÞ� @fðSði; :ÞÞði; jÞ
@Sði; :Þ : (8)

Note that @Lt=@Sði; :Þ is a tensor with the same shape of Sði; :
Þ, and the element gkði; jÞ represents the gradient of linkage
ði; jÞ on the kth snapshot.

4.3 Traversal Search Based TGA

Given a dynamic network S, we aim to find ~S such that
the target link could be prevented being predicted from
DDNE at a minimum cost. Possible solutions are myriad
since there are tens of thousands of nodes and multiple
snapshots in S, making it hard to find a proper ~S. Chen
et al. propose to modify links according to Eq. (9) to disturb
GCN on the task of node classification. The modification
involves both the magnitude and sign of gði; jÞ, which
decides the candidate linkages and how they should be
modified, respectively

Âði; jÞ ¼ Aði; jÞ þ signðgði; jÞÞ: (9)

Considering a simple function fðxÞ ¼ ax where a is the
weight and x denotes the independent variable, the fðxÞ
changes faster if a is larger and the sign of a determines the
direction in which fðxÞ changes. This small example gives
us insights of the relationship between Lt and the gradients.
To effectively lower Lt and mislead DDNE subsequently,
we need to find the link with maximummagnitude of gradi-
ent. The assumption follows that the link with maximum
magnitude of gradient contributes the most when making
inference. And the sign of gradients, denoted as
signðgði; jÞÞ, determines whether the effect is positive or
negative. However, DDNE is not a convex function as sim-
ple as fðxÞ. And neither GCN or DDNE could learn network
features and make prediction flawlessly, which might result
in the deviation of gradients. It means that modifying the

Fig. 1. The framework of TGA-based methods. The nodes in the trees below represent the generation of adversarial example sets and each one in
orange corresponds to the set generated in the current iteration.
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link with maximum magnitude of gradient does not always
lead to best attack performance and signðgði; jÞÞ might
express the opposite meaning.

4.3.1 Search Across Snapshots

In TGA-based attack methods, we first group top c links
based on the magnitude of the gradients @Lt=@Sði; :Þ and
then find the optimal link to modify within the c candidates.
Specifically, within one iteration, we first sort links based on
jgijjwith respect to each snapshot, and then select top c links
in each snapshot. We then generate candidate adversarial
examples by altering the linkage status of the selected links.
Specifically, if there is a link between vi and vj at the kth

snapshot, we then remove eij; In the reverse case, suppose
vi and vj are not connected at the kth snapshot, we then can
add a link between vi and vj on the corresponding snapshot.
Note that we do not follow the rule defined in Eq. (9) but
just perform attack on the basis of linkage status. When
implementing the above steps, we treat the one-link modifi-
cation on the target snapshot as a basic operation, called
OneStepAttack, as shown in Algorithm 1.

Algorithm 1. OneStepAttack

Input: Original network Sði; :Þ, the partial derivative
@Lt=@Sði; :Þ, target snapshot k, number of candidate
adversarial examples c;

Output: A set of candidate adversarial networks Sði; :Þ
Initialize Sði; :Þ ¼ Sði; :Þ;
Initialize empty candidate adversarial examples set CA;
Initialize Q ¼ fgkði; 0Þ; . . . ; gkði; nÞg and sort it by the magni-
tudes of their gradient in ascending order.;
for i ¼ 0 to c do
Get the target link based on Q½i�;
Generate a adversarial example and add it to CA;

end
return CA;

4.3.2 Search Between Iterations

We iteratively add perturbations to Sði; :Þ when performing
the attack. In each iteration, the perturbation ~S is
designed according to the time-aware link gradients. We
have two options for this, one is to use the gradients

obtained in the last iteration (for higher efficiency), and the
other is to re-calculate them based on the adversarial exam-
ple generated in the last iteration (for higher effectiveness).
Here, we use the second one. We first obtain all possible
adversarial examples in g iterations. After that, we choose
the one which could achieve the minimum pij as the final
adversarial example. The procedure of our TGA-Tra is visu-
alized in the left part of Fig. 2. For instance, when we set the
number of historical snapshots ns ¼ 2, g ¼ 6 and c ¼ 2, we
will have 212 possible adversarial examples as candidates,
and the red dashed box in Iteration 6 is the finally chosen
one. Clearly we can get the attack route through backtrack-
ing. The details of TGA-Tra are presented in Algorithm 2.

Algorithm 2. TGA-Tra: Attack via Traversal Search

Input: A trained DDNE, original network Sði; :Þ, number of
modifications g, number of candidate adversarial
examples c;

Output: adversarial example: Ŝði; :Þ
Initialize candidate adversarial examples set CA ¼ Sði; :Þ;
while g > 0 do
Initialize empty set CA;
for each adv_example in CA do
for k ¼ 1 to ns do
g = @Lt=adv example;
Ŝ = OneStepAttack(adv_example, g, k, c);
Add Ŝ to CA;

end
end
CA = CA;
g ¼ g � 1;

end
for each adv_example in CA do
pði; jÞ ¼ DDNEðadv exampleÞ;

end
Select Ŝði; :Þ as the one with minimum p(i,j) in CA;
return Ŝði; :Þ;

4.4 Greedy Search Based TGA

TGA-Tra could be effective since it compares a large num-
ber of modification schemes, but it is of relatively high time
complexity, especially for large N and ns. Taking the partial
derivatives of the input pairs of nodes (op1) and sorting
them in descending order (op2) are the two most time-

Fig. 2. Illustration of TGA-Tra and TGA-Gre with ns ¼ 2, g ¼ 6 and c ¼ 2. The network in red dashed box is the optimal one in the corresponding itera-
tion. And the arrow in orange denotes that we modify the link on the first snapshot while the one in green represents that we make attack on second
snapshot.
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consuming steps when performing the attack. For TGA-Tra,
we need to repeat the above two steps at most cgng

s times to
hide the target link from being predicted, which is barely
affordable in real cases. We thus propose another greedy
search method, namely TGA-Gre, as shown in the right part
of Fig. 2. Here, in each iteration, we select the one achieving
the minimum pij as the most effective adversarial example,
which is further considered as the input of next iteration.
The details of TGA-Gre are presented in Algorithm 3.

Algorithm 3. TGA-Gre: Attack via Greedy Search

Input: A trainedDDNE, original network Sði; :Þ, target link (i,
j), number of modifications g, number of candidate
adversarial examples c;

Output: adversarial example: Ŝði; :Þ
Initialize Ŝði; :Þ ¼ Sði; :Þ;
while g > 0 do
Initialize empty candidate adversarial example set CA;
for k ¼ 1 to ns do
g = @Lt=Ŝði; :Þ;
Ŝ=OneStepAttack(Ŝði; :Þ, g, k, c);
Add Ŝtempði; :Þ to CA;
pði; jÞ ¼ DDNEðŜÞ;

end
Select Ŝði; :Þ as the one with minimum p(i,j) in CA;
g = g � 1

end
return Ŝði; :Þ

For a target link ði; jÞ, TGA-Gre assumes that the lowest
pij in each iteration could lead to the best attack result. It
avoids massive comparisons between iterations and thus
can significantly accelerate the whole process. Similar to the
procedure of TGA-Tra, TGA-Gre also compares gt across all
snapshots in each iteration. The major difference is that
TGA-Gre elects a local optimal link in each iteration. It is
clear that we only need to repeat op1 and op2 at most gcns

times, which makes the attack much more efficient.

5 EXPERIMENTS

5.1 Datasets

We perform experiments on six real-world dynamic net-
works, with their basic statistics listed in Table 1.

� RADOSLAW [34]: It is an internal email network
between employees in a mid-sized manufacturing
company. We focus on the nodes appeared in 2010-
01 and construct network using their interactions
from 2010-02-01 to 2010-09-01.

� DNC [35] It is a directed network of emails in the
2016 Democratic National Committee email leak. We
construct the dynamic network using the emails
between 2016-04-29 and 2016-05-17 with all the
nodes contained in the dataset. The network is
divided into 7 snapshots at the interval of 3 days.

� LKML [36]: It is also an email network extracted from
the linux kernel mailing list. We focus on the users
who appeared on the mailing list between 2007-01-
01 and 2007-04-01 and slice the data from 2007-04-01
to 2008-10-01 at the interval of 3 months.

� ENRON [37]: It is an email network covering decades
of the email communication in Enron. We use the
records between 2000-04-01 and 2001-10-01 experi-
ments and slice them into 7 snapshots in 3-month
increments. Also, we only focus on part of the email
address that at least sent an email from 2000-01-01 to
2000-04-01.

� WIKI [38]: It is a communication network of the Ser-
bian Wikipedia. The temporal links appeared
between 2000-01-01 and 2001-10-01 are first divided
into 7 parts at the interval of 3 months and then used
for constructing dynamic network.

� FLICKR [39]: It records the friendships between users
of Flickr. We use the temporal links appeared from
2007-03-01 to 2007-04-05 and focus on the users
appeared from 2007-03-01 to 2007-03-06. The net-
work is divided into 7 slices at the interval of 5 days.

As described, all the datasets are divided into 7 snap-
shots with different intervals. The first snapshot provides
the nodes we need to focus and the rest are used for training
and inference. All the datasets are available online.1

5.2 Baseline Methods

As the first work to study adversarial attack on DNLP algo-
rithms, we design two baseline attacks, RA and CNA, to
compare with TGA-Gre and TGA-Tra. Also, we implement
another two gradient-based attack methods, FGA and IG-
JSMA, as baselines.

� Random Attack (RA): RA randomly modifies g link-
ages in all snapshots. In practice, we add b new con-
nections to the target node and remove g � b links
between the target node and its neighbors. Here, we
use RA to see the robustness of DNLP algorithms
under random noises.

� Common-Neighbor-based Attack (CNA): CNA adds b
links between node pairs with less common neigh-
bors and remove g � b links between those with
more common neighbors. We adopt CNA as a base-
line since common neighbor is the basis of many simi-
larity metrics between pairwise nodes used for link
prediction.

� Fast Gradient Attack (FGA) [22]: FGA recursively
modify the linkage with maximum absolute gradient
obtained by @Lt=@Sði; :Þ, until the attack succeeds, or
the number of modifications reaches g. We use FGA

TABLE 1
The Basic Statistics of the Three Datasets

Dataset jV j jET j �d dmax Timespan (days)

RADOSLAW 151 72.2K 27.7 240 242
DNC 1,891 46.7K 1.24 198 731
LKML 2,210 201.7K 7.9 718 731
ENRON 2,628 308.8K 2.23 228 365
WIKI 46,300 66.6K 0.24 14,732 2,191
FLICKR 74,927 90.1K 2.03 1,411 30

�d represents the average degree of the network and dmax is the maximum
degree.

1. http://konect.cc/
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as a baseline to address the importance of utilizing
temporal information in attacking DNLP algorithms.

� IG-JSMA [40]: IG-JSMA uses integrated gradients to
attack GCN under the settings of JSMA (Jacobian-
based saliency map attack) [41]. In this paper, we
employ part of IG-JSMA which focuses on graph
structure manipulation, making it suitable for attack-
ing DDNE. And g for IG-JSMA is also set to 10.

We set g ¼ 10 in all experiments and b ¼ 5 for RA and
CNA. For TGA-based methods, we set c to 5. We first train
the models with original data, and then feed adversarial
examples generated by DDNE to each model, to validate
the effectiveness of the attacks.

5.3 Evaluation Metrics

We choose attack success rate (ASR) and average attack modifi-
cation links (AML) as attack effectiveness criterion.

� ASR: The ratio of the amount of links that are suc-
cessfully hidden to the total number of target links
that can be correctly predicted in the target snapshot.

� AML: The average amount of perturbation to pre-
vent each target link from being predicted. If it needs
to modify at least qi links to hide link i, then AML is
defined as

AML ¼ 1

Nl

XNl�1

i¼0
qi; (10)

where Nl represents the number of target links. Note
that qi 	 g and the equality holds when the attack
fails.

We use ASR to evaluate attack methods in the first place
which reflects the possibility to successfully perform attack
and then compare their AMLwhen their ASR are close.

5.4 Results

First, we use the generated adversarial examples to fool the
DDNEmodel to prevent target links from being predicted. We
set g ¼ 10 to ensure the disguise of modification, which also
leads the maximum of AML equaling to 10. The results are
presented in Table 2. The two TGA methods outperform FGA
and IG-JSMA in terms of both ASR and AML, while the two
gradient-basedmethods are better than the two heuristicmeth-
ods, CNA and RA. The results suggest that: 1) the gradients of
DDNE is critical to attack different DNLPmethods; 2) utilizing
temporal information can indeed significantly improve the
attack effectiveness. And IG-JSMA is slightly better than FGA
which may contribute to the use of integrated gradients. More-
over, we study the attack performance on 3 different types of
links: The links that aremost likely to exist according to DDNE,
the links with highest degree, in terms of the sum of terminal-
node degrees, and the links with highest edge betweenness
centrality. The other 2 types of linkswhich have physicalmean-
ing in real scenarios are easier to be hidden from detection,
reflecting the practicability of TGA-basedmethods.

As expected, TGA-Tra behaves better than TGA-Gre, but
the latter is much more efficient and thus more practical in
real-world applications. The gap of the performance
between TGA-Tra and TGA-Gre overturns the hypothesis
that the greatest drop of Lt in each iteration does not lead to
the best attack performance sometimes. This enlightens us
to further explore specific meanings behind gt. Fig. 3 visual-
izes the attack schemes of TGA-Tra and TGA-Gre per-
formed on Eð10; 4Þ of RADOSLAW on #3 snapshot. We find
that the performance of TGA-Tra and TGA-Gre are very
similar in each iteration, but their routes seem totally differ-
ent. By investigating these adversarial examples, we have
the following two observations:

� First, TGA-Tra is more likely to modify the links on
earlier historical snapshots, while TGA-Gre tends to
change the links on the most recent ones;

TABLE 2
Attack Performance in Terms of ASR and AML
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� Second, TGA-Tra prefers to add rather than delete
links, while TGA-Gre has the opposite tendency.

Such observations indicate that TGA-Tra could be more
concealed than TGA-Gre, since people tend to pay more
attention to recent events, e.g., link change in recent snap-
shots. On the other hand, TGA-Gre may be preferred if we
want to get some short-term attack effect. Besides, TGA-Tra
seems to have lower social cost, since adding links are
always easier than deleting in our social circle. Since TGA-
Gre has similar performance, while is much more efficient,
compared with TGA-Tra, we will mainly focus on TGA-Gre
in the rest of this paper.

5.4.1 Attack on Long-Term Prediction

Besides focusing on the next immediate snapshot, research-
ers always look into the performance of DNLP algorithms on
long-term prediction. That is whether the DNLP algorithms
are able to have a good prediction performance on not only
the next immediate snapshot but also the snapshots in the
remote future. Similarly, we would also like to investigate
whether the TGA-based methods are effective for hiding
remote future links. To address the problem, we first use
DDNE to make predictions for the #3, #4 and #5 snapshot
with ns ¼ 2 and then generate adversarial examples for the
three snapshots with TGA-Gre. The comparison of the attack
performance on the three snapshots are shown in Table 3.
We can see that, generally, the performance of TGA-Gre are
close in spite that the target snapshots vary. Additionally,
there are no significant variation tendency of the attack per-
formance. And we also present the results of TGA-Tra as
well as other baselines in Appendix B.1, which can be found

on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2021.3110580. The
results show that TGA-based attack methods are applicable
for long-term prediction attack.

5.4.2 Long-History Attack

The number of historical snapshots, ns, is one of the most
significant parameters that affect the performance of DNLP

Fig. 3. Attack process of TGA-Tra and TGA-Gre on Eð10; 4Þ of RADOSLAW on #3 snapshot.

TABLE 3
The Performance of TGA-Gre on Different Snapshots
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algorithms. Typically, larger ns means more historical infor-
mation can be used in prediction, and thus may improve
the performance of DNLP algorithms. Higher accuracy will
equip the model with more precise gradients. Here, we are
interested in whether the increase of ns will get in the way
of adversarial attacks or behave the opposite.

We compare the attack performance of TGA-Gre on the
six datasets with respect to different ns. In particular, we
first apply DDNE with the input sequence varying from 2 to
4, and then generate adversarial examples with g ¼ 10. The
results are shown in Fig. 4, where we can see that, indeed,
the performance of TGA-Gre increases more or less as ns

increases, indicating that larger ns offers more precise gradi-
ent information so that TGA-Gre could be more effective. In
the mean while, the AML also increases. One possible rea-
son is that the increase of ns expands the solution space and
TGA-Gre needs to modify more links to make successful
attacks. Different from the performance on the other data-
sets, the attack performance increase slightly when applying
TGA-Gre to DNC and LKML as ns increases. We argue that it is
because larger ns makes DDNE more robust on these two
datasets and g ¼ 10 is not enough for TGA-Gre to attack on
some specific links. Actually, the performance of TGA-Gre
will increase if we set g ¼ 15.

5.4.3 Adding-Link Attack

In social networks, it is considered that deleting links is of
higher social cost than adding. Moreover, temporal net-
works may also have multiple interactions between a pair
of nodes. Therefore, deleting one link on a snapshot always
removes all the corresponding interactions in the given
interval. And some links may be too important to be deleted
in real scenarios. Due to this gap between the cost of delet-
ing and adding links, we would like to investigate how the
attack performance of TGA-Gre will be influenced if we just
add, rather than rewire, links to the original networks. The
results are presented in Table 4, where we find that the per-
formance of TGA-Gre slightly decrease when we perform
the attack only by adding links. Such results indicate that,

in certain cases, we can perform the cheap attack on DNLP
by only adding a small number of links, at the cost of losing
a little bit attack performance.

Also, we are surprised that the performance of TGA-Gre
with only adding links on LKML slight increase. It shows that
TGA-Gre actually find the best modification schemes on dif-
ferent networks and rewiring links might be the optimal
choice in all cases.

5.5 Attack Under Gradient Disturbance

TGA selects candidate links according to Lt obtained from
DDNE while Lt is easily affected by the weights of DDNE.
The change of hyper-parameters, such as the number of
training epochs and the coefficient of regularization term,
could result in the change of the weights. It may introduce
noise into Lt but not lower the performance of the model.
Would the performance of TGA be affected subsequently?
We investigate into the problem by adding disturbance to
Lt manually. We first randomly select ujV j nodes and then
add noise sampled from Nðm; 1Þ where m ¼ 0:2L1ðLtÞ.
Fig. 5 shows the performance of TGA-Gre and TGA-Tra
under different ratios of disturbance. Generally, TGA-Gre
and TGA-Tra perform relatively stable when u varies from
0.1 to 0.2. When u further increases, the performance drops
on some datasets. ASR on LKML and WIKI stays the same as u
increases, indicating the robustness of TGA. And the
increase of AML means TGA-Gre and TGA-Tra need to
modify more links to maintain ASR. On FLICKR, the perfor-
mance of TGA-Gre and TGA-Tra significantly drops when u

increases to 0.3. We argue that there exists some key links
on FLICKR which make TGAmore sensitive.

5.6 Runtime Comparison

As mentioned in Section 4, we propose TGA-Gre to reduce
the computational complexity to make the attack more prac-
tical. To highlight the efficiency of TGA-Gre, we compare
the runtime of different attack methods performed on the
top-100 links with the highest existence probability of DNC

with respect to increasing g. In the runtime comparison, the
number of modified links of each method must reach g no
matter it succeeds or not. And we exclude the runtime of
TGA-Tra since it is too time-consuming to finish the attack

Fig. 4. The performance of TGA-Gre when ns changes from 2 to 4
(From left to right).

TABLE 4
The Performance of TGA-Gre With Only Adding Links
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without early stop (stops once the attack succeeds) in an
acceptable time. It would take hours for TGA-Tra to attack
one link in DNC when g ¼ 20. Thus, it is hard to compare the
runtime in one figure. In Fig. 6, we can find that the runtime
of TGA-Gre, FGA and IG-JSMA are comparable since all of
them are gradient-based approaches. Though TGA-Gre is
more effective in practice, it is slightly slower for that it
needs comparison among different candidate adversarial
examples in each iteration. As for RA and CNA, attacking
with no gradient information makes them the fastest meth-
ods among all the methods despite the poor performance.
In fact, if the attack is performed with early stop, TGA-Gre
will have shorter runtime than FGA.

5.7 Case Study: Ethereum Transaction Network

Above experiments conducted on six benchmark datasets
have shown the effectiveness of TGA-Tra and TGA-Gre on
DDNE. In this section, we apply TGA-Gre on the Ethereum
transaction network to hide specific transactions from detec-
tion. Ethereum is a public blockchain-based platform with
the support of smart contract. With around 300 billion USD
market capitalization and over 500 billion USD monthly
transaction volume, it becomes the largest virtual currency
trading platform second to Bitcoin. A bunch of researchers
have mined the valuable data with the help of graph analy-
sis [42], [43], [44] amongwhich the analysis of temporal links,
i.e., the transactions, is one of the research emphases [43].

We use the data provided by XBlock2 and extract the
transaction records between 2016-02 and 2016-06. The data
are sliced into 5 snapshots at the interval of 1 month and
modeled as a dynamic network with 2866 nodes which rep-
resent the transaction addresses. We focus on two types of
accounts: Normal accounts and those belong to Ethereum
pool which are identified according to the records on Ether-
scan.3 Fig. 7 visualizes #3 snapshot of the Ethereum

transaction network from which we can find clusters cen-
tered at those Ethereum pool accounts, such as DwarfPool
and CoinMine. To hide some target links in the transaction
network from the detection of DDNE, we apply TGA-Gre
and TGA-Tra to generate corresponding adversarial exam-
ples. Table 5 compares the attack performance of TGA-
based methods and the baselines. TGA-Gre and TGA-Tra
have the best performance among the five methods. Though
IG-JSMA has the same ASR as TGA-Gre and TGA-Tra
does, it needs to modify more links. In practice, adding a
link in the transaction network could be costly and thus
AMLmatters in this occasion.

As we can observe in Fig. 7, most links in the network are
those between normal addresses and Ethereum-pool-
belonged addresses which are the way normal users mak-
ing profits from the pools. In real scenarios, we do not pay
attentions to these links. Instead, the links between normal
addresses are noteworthy. Suppose a user want to make a
vital transaction recondite in the near future, he or she could

Fig. 5. The performance of TGA-Gre and TGA-Tra under gradient disturbance.

Fig. 6. Runtime of different attack methods performed on the top-100
links with the highest existence probability of DNC.

2 http://xblock.pro
3 https://etherscan.io/
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make transfers to certain addresses with the guidance of
TGA. Then the transaction will not be discovered from cur-
rent time scope even with the help of DDNE.

6 CONCLUSION

In this paper, we present the first work of adversarial attack on
DNLP, and propose the time-aware gradient, as well as two
TGA methods, namely TGA-Tra and TGA-Gre, to realize the
attack. Comprehensive experiments have been carried out on
six benchmark networks and also the Ethereum transaction
network. The results show that our TGAmethods behave bet-
ter than the other baselines, achieving the state-of-the-art
attack performance on DNLP. Besides, we investigate into the
performance of TGA-Gre in several typical occasions in
DNLP, including long-term prediction and long-history pre-
diction. Interestingly, we also find that long-term prediction
seems to bemore vulnerable to adversarial attacks,while using
longer historical information can enhance the robustness of
DNLP algorithms. The results of adding-link attack also prove
the practicability of TGA-Gre.

Currently, TGA methods rely on the gradients and it
requires researchers know every detail of the target DNLP
model which limits its application scenarios. In the future,
we would like to study the problem of black-box attack on
DNLP and further propose better strategies to improve their
attack performance; on the other hand, we will also seek for
methods to defend against such adversarial attacks, to

achieve more robust DNLP algorithms. Besides, we would
investigate into efficient adversarial attack methods on
large-scale networks to extend its practicability.
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