
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Time-aware Gradient Attack on Dynamic
Network Link Prediction

Jinyin Chen, Jian Zhang, Zhi Chen, Min Du, and Qi Xuan, Member, IEEE

Abstract—In network link prediction, it is possible to hide a target link from being predicted with a small perturbation on network
structure. This observation may be exploited in many real world scenarios, for example, to preserve privacy, or to exploit financial
security. There have been many recent studies to generate adversarial examples to mislead deep learning models on graph data.
However, none of the previous work has considered the dynamic nature of real-world systems. In this work, we present the first study
of adversarial attack on dynamic network link prediction (DNLP). The proposed attack method, namely time-aware gradient
attack (TGA), utilizes the gradient information generated by deep dynamic network embedding (DDNE) across different snapshots to
rewire a few links, so as to make DDNE fail to predict target links. We implement TGA in two ways: one is based on traversal search,
namely TGA-Tra; and the other is simplified with greedy search for efficiency, namely TGA-Gre. We conduct comprehensive
experiments which show the outstanding performance of TGA in attacking DNLP algorithms.

Index Terms—Dynamic network, link prediction, adversarial attack, transaction network, blockchain, deep learning

F

1 INTRODUCTION

I N the era of big data, network analysis emerges as a powerful
tool in various areas, such as recommendation on e-commerce

websites [1], bug detection in software engineering [2], and
behavioral analysis in sociology [3]. Existing algorithms like tradi-
tional similarity indices and newly developed network embedding
methods learn structural features on static networks while most
of them ignore the dynamic nature of real-world systems. The
dynamics of networks, such as the establishment and dissolution
of friendship in online social networks, could help the analysis. For
example, in citation networks, the citations in different time which
reflect the research focus of the authors should weigh differently
in the prediction of future citations. And dynamic networks are
naturally proposed for these occasions.

Dynamic network analysis, especially link prediction (DNLP)
which we discuss in the paper, mainly focuses on the linkages
status. That is predicting whether a link exists or not at a certain
time based on historical information. For instance, given a social
network, DNLP algorithms predict a given individual’s relation-
ships with others in the near future based on his/her historical
friend lists. Comparing with traditional link prediction algorithms,
DNLP algorithms could learn the underlying transitions of behav-
ior patterns while the traditional ones could not. DNLP is generally
performed in two ways: time-series data analysis and machine
learning-based methods. A representative category of the former
one is Autoregressive Integrated Moving Average (ARIMA) [4],
[5] related methods which treat time varying similarity scores

• J. Chen, J. Zhang and Q. Xuan are with the Institute of Cyberspace
Security, College of Information Engineering, Zhejiang University of
Technology, Hangzhou 310023, China. E-mail: {chenjinyin, jianzh,
xuanqi}@zjut.edu.cn.

• Z. Chen is with the Department of Computer Science, University of Illinois
Urbana-Chamoaign, Urbana, IL 61801, USA. E-mail: zhic4@illinois.edu.

• M. Du is with Palo Alto Networks, Santa Clara, CA 95054, USA. E-mail:
min.du.email@gmail.com.

• Corresponding author: Qi Xuan.

as time series to predict future links. The latter one includes
factorization-based approaches and deep learning models of which
the majority consists of Recurrent Neural Networks (RNNs).

Regardless of their performance, DNLP algorithms may suffer
from adversarial attacks as most machine learning methods do.
The exploitation of adversarial examples may expose DNLP algo-
rithms to security threats. However, from another perspective, this
property could be useful in other fields like privacy-preserving.
Privacy issues have aroused wide concern since the data theft of
Facebook in 2018. In fact, one can infer private information, such
as romantic relationship or visiting the same restaurant [6], [7],
of target individuals with the help of advanced algorithms like
DNLP. A well designed adversarial example may protect intimate
relationships from being predicted by even the most advanced
DNLP approach, which could provide a possible solution to
privacy protection. The target link could be hidden by linking
the user to someone unfamiliar, or removing intimate links in
historical interactions. A bunch of works have explored the ways
of generating adversarial examples for graphs in recent years.
Adversarial attack could be classified into three categories:

• White-box Attack: The attacker knows everything of the
model, including training data and the model parameters.

• Gray-box Attack: The Attacker has limited knowledge of
the model. Usually, the attacker trains a surrogate model
to approximate the information obtained from the victim
model. And then adversarial examples are generated ac-
cording to the surrogate model.

• Black-box Attack: The attacker could acquire nothing of
the model. The attacker could only feed the model with
input data and obtain the output scores or labels.

In this paper, we mainly focus on white-box attack to investigate
the vulnerability of DNLP models. Though white-box attacks
on image and graph both use gradient information to guide the
generation of adversarial examples, we could only flip the linkage
status if we want to change the graph structure while there is
no such limitation of the attack on images. Most existing re-

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

searches [8] focus on generating adversarial graphs to fool Graph
Convolutional Network (GCN) [9] and achieve considerable attack
performance. However, few of them involve dynamic networks,
not even DNLP.

In this paper, we propose a novel adversarial attack targeting
DNLP, which we refer as Time-aware Gradient Attack (TGA),
to hide target links from being predicted. Benefitting from the
gradients generated by deep learning model, i.e., DDNE, TGA
is able to find candidate links to be modified without extensive
search, and perform attack at minimum cost. Considering the
dynamics of networks, TGA compares the gradients on different
snapshots separately rather than does simple sorting on all snap-
shots; furthermore, it searches candidate links across iterations to
make full use of the gradients. Overall, our main contributions are
summarized as follows.

• We design TGA to generate adversarial examples based
on the gradients obtained by DDNE. As far as we know, it
is the first work about adversarial attacks on DNLP.

• We conduct extensive experiments on six real-world dy-
namic networks and compare TGA with several baselines.
The results show that TGA achieves the state-of-the-art
attack performance. And a case study on Ethereum trans-
action network is carried out to validate the practicability.

• We vary DNLP model parameters and observe several
interesting phenomena which could be inspiring to future
research. For example, long-term prediction is more vul-
nerable to adversarial attacks; while integrating more his-
torical information can increase the robustness of DDNE.

For the rest of this paper, we first review related works in Sec. 2
and preliminaries in Sec. 3. Then, we present the proposed attack
details of TGA-Tra and TGA-Gre in Sec. 4, and gives the results
of the proposed attack methods as well as the performance under
some certain circumstances in Sec. 5. Finally, we conclude the
paper with the prospect of future work in Sec. 6.

2 RELATED WORK

This section briefly reviews the literature of DNLP algorithms and
the related work on adversarial attacks.

DNLP algorithm. Recently, a temporal restricted Boltzmann
machine (TRBM) is adopted with additional neighborhood in-
formation, namely ctRBM [10], to learn the dynamics as well
as the structural characteristics of networks. As an extension of
ctRBM, GTRBM [11] combines TRBM and boosting decision
tree to model the evolving pattern of each node. RBM deals with
temporal networks in a 2-layer neural network and maybe not
able to handle the high dimensional structural features. Besides
the RBM-based methods, recurrent neural networks (RNN), like
long short-term memory (LSTM), plays an important role in other
DNLP algorithms. A stacked LSTM module is applied inside
the autoencoder framework to capture time dependencies of the
whole network [12], and a gated recurrent network (GRU) is used
as the encoder which could relatively lower the computational
complexity [13]. Goyal et al. [14] propose dyngraph2vec and its
variations which combine multiple LSTM cells in an auto-encoder
framework. To better learn graph structures, GCN-GAN [15]
incorporates GCN with LSTM and the generative adversarial
network (GAN) to generate temporal links. Above approaches
are mostly based on deep learning models, limiting them to the
dynamic networks with fixed scale. To address the problem, Wu

et al. [16] propose a similarity index for node pairs based on node
ranking which is able to deal with the dynamic networks with
growing size of nodes. Instead of dividing a network into snap-
shots, CTDNE [17] performs future link prediction on continuous
dynamic network by temporal random walk.

Adversarial attacks. A bunch of works have explored the
field of adversarial attack on graph data. Community membership
anonymization is realized by connecting the target user to the one
of high centrality [18]. Another method focuses on disconnecting
certain neighbors while adding links between different commu-
nities, with regards to the centrality of degree, closeness and
betweenness [19]. In fact, community deception can be achieved
by only rewiring the links inner the target community [3]. On
the other hand, the emerging network embedding techniques,
such as the graph convolutional network (GCN) [9], have drawn
wide attention these days. And NETTACK [20], [21] is proposed
to generate adversarial examples with respect to graph structure
and node feature to fool the GCN model. Another gradient-based
method called fast gradient attack (FGA) [22] makes full use of
the gradients information to choose candidate links that need mod-
ification when performing attack. The above methods are called
evasion attacks [20] which aim to generate adversarial examples
to deceive target models without changing models’ parameters.
Zügner et al. [23] apply meta-gradient to achieve training-time
attack which lowers the global accuracy in training process. Not
limited to the manipulation on links, adding fake nodes [24] could
also minimize the classification accuracy of GCN. To increase the
scalability of attack methods, SGA [25] carries out adversarial
attack on a small subgraph consisting of k-hop neighbors of the
target node rather than the whole network. Though most existing
adversarial attacks target at GCN, some unsupervised embedding
methods are also concerned, e.g., Bojchevski et al. [26] analysis
the adversarial vulnerability on random walk-based embedding
methods and Sun et al. [27] propose to use Projected Gradient
Descent (PGD) based attack lower the accuracy of DeepWalk [28]
and LINE [29] on link prediction task.

Graph adversarial examples are designed not only for fooling
GNNs but also for improving the robustness of the models
through adversarial training. GraphAT [30] trains a GCN by
additionally minimizing a graph adversarial regularizer to improve
the performance and robustness. It adds perturbations to node
features along with the training process. In addition, Jin et al. [31]
propose to add noise to the latent node representations to achieve
the same goal. Like the adversarial training methods for image
classification models [32], [33], those focusing on GNNs could
only generate continuous but not discrete perturbations and thus
could not modify the network structure.

As innovative as they are, existing adversarial attack ap-
proaches are still limited to static networks while the networks
in real world are always time-evolving.

3 PRELIMINARY AND PROBLEM FORMULATION

In this section, we present the definition of DNLP, as well as the
adversarial attacks on it.

3.1 Dynamic Network Link Prediction
A network structure could be represented by G = {V,E}, where
V = {v1, v2, · · · , vn} denotes the set of network nodes, and
E ⊆ V ×V represents the set of links. A directed link from vi
pointing to vj is denoted by an ordered pair of nodes (vi, vj). In

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

this paper, we focus on the dynamic networks with fixed node set
but temporal links. Such a dynamic network could be modeled as a
sequence of graphs {Gt−N , · · · , Gt−1}, where Gk = {V,Ek}
represents the network’s structure at the kth interval. With this,
the definition of DNLP goes as follows.

• Given a sequence of N graphs S = {At−N , · · · , At−1},
where Ak denotes the adjacent matrix of Gk, the task of
dynamic network link prediction is to learn a mapping
S → At, from historical snapshots to future network
structure.

Specifically, DNLP algorithms capture latent spatial features
and temporal patterns from historical information, i.e. previous N
adjacency matrices, and then are able to infer the adjacency matrix
of next snapshot. A link exists between vi and vj at time t if the
probability P (At(i, j)) given by the DNLP algorithm is larger
than some threshold.

3.2 Adversarial Attack on DNLP

The idea of the adversarial attack has been extensively explored in
computer vision, which is typically achieved by adding unnotice-
able perturbation to images in order to mislead classifiers. Sim-
ilarly, adversarial network attack on DNLP generates adversarial
examples by adding or deleting a limited number of links from the
original network, so as to make DNLP algorithms fail to predict
target linkages. Intuitively, the goal of the generated adversarial
example is to minimize the probability of the target link predicted
by the DNLP algorithms, which could be formalized as

minP (At(i, j)|Ŝ)
subject to Ŝ = S+4S

(1)

where Ŝ denotes the generated adversarial example, and4S is the
perturbation introduced into S, i.e., the amount of links that need
modification. Usually, 4S is small enough to make the attack
unnoticeable.

Different from the attack strategies on static network algo-
rithms, the chosen links added to or deleted from historical
snapshots are associated with temporal information. One same link
on different snapshots may contribute differently in the prediction
of target link, not to mention that the linkages are time-varying.
Therefore, it is crucial to take time into consideration when
designing the attacks.

4 TIME-AWARE GRADIENT ATTACK

In order to generate adversarial dynamic network with optimal link
modification scheme, a naive idea is to search through permutation
and combination, which however is extremely time-consuming.
Fortunately, deep learning based DNLP methods produce abun-
dant information when making predictions, i.e., the gradients,
which may assist adversarial example generation. It assumes that
the attacker could access every detail of DDNE, including the
model structure and the parameters, indicating that TGA is a
white-box attack method. Here, we first briefly introduce DDNE
and then show how it can help to generate adversarial examples.
The framework is shown in Fig. 1. It should be noted that it does
not matter which DNLP model is adopted here, as long as it can
achieve a reasonable performance.

4.1 The Framework of DDNE

DDNE [13] has a dual encoder-decoder structure. A GRU could
be used as the encoder, which reads the input node sequence both
forward and backward, and turns the node into lower represen-
tation. The decoder, which consists of several fully connected
layers, restores the input node from the extracted features. The
original DDNE directly encodes each snapshot with a GRU,
making it unsuitable for processing large-scale network. To make
DDNE adapt to larger networks, we first encode the network with
an embedding layer which significantly reduces the number of
parameters of DDNE. For a node vi, the encoding process is
described as

S = Embedding(S),
−→
h k
i = GRU(

−→
h k−1
i +

−→
S k(i :, )),

←−
h k
i = GRU(

←−
h k−1
i +

←−
S k(i :, )),

hki = [
−→
h k
i ,
←−
h k
i ], k = {t−N, · · · , t− 1},

ci = [ht−Ni , · · · ,ht−1
i ],

(2)

where hki represents the hidden state of the GRU when pro-
cessing vi of the kth snapshot, and ci is the concatenation of
all hki in time order. hki consists of two parts, the forward one−→
h k
i and the reversed one

←−
h k
i , which are fed with opposite

time sequence,
−→
S (i, :)) = {At−N(i, :), · · · ,At−1(i, :)} and←−

S (i :, )) = {At−1(i, :), · · · ,At−N(i, :)}, respectively. The
decoder is composed of multilayer perceptrons, of which the
complexity may vary according to the scale of datasets. The
decoding process could be formulated as

y
(1)
i = σ1(W

(1)ci + b(1)),

y
(m)
i = σm(W(m−1)y

(m−1)
i + b(m)),m = 2, · · · ,M

(3)

where M represents the number of layers in the decoder, and σm
denotes the activation function applied in the mth decoder layer.
Here, σm = ReLU(·) when m < M and σM = sigmoid(·).
In the training process, DDNE minimizes objective function Lall
which consists of three parts: an adjusted L2 loss Ls between
predicted snapshot and the true one to learn the transition pattern,
an adjusted L2 loss Lc between the two embeddings to capture
interaction proximity and a regularization term Lreg to avoid
overfitting. And Lall is defined as

Lall = Ls + βLc + γLreg. (4)

Here, Ls adds an additional weight Z(i, :) to L2 loss in order to
ease the impact of sparsity, with {Z(i, j)}nj=1 = 1 if St(i, j) = 0
and {Z(i, j)}nj=1 = α > 1 otherwise. Ls is defined as

Ls = −
n∑
i=1

Z(i, :)� [At(i, :)− Ât(i, :)]
2

= −
n∑
i=1

n∑
j=1

Z(i, j)[At(i, j)− Ât(i, j)]
2.

(5)

On the other hand, Lc imposes Nij , the amount of links between
vi and vj in historical snapshots, to L2 loss. It addresses the
influence of historical connections, and is defined as

Lc =
n∑

u,v=1

Nij ‖ ci − cj ‖2. (6)

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Select the one 
with minimum 𝒑𝒊𝒋

t

…

…

…

𝝏𝑳𝒕
𝝏𝑺

𝝏𝑳𝒕

𝝏𝑺෡

S Attack on 
1st snapshot

Attack on 
2nd snapshot

Attack route

…
… …

Attack on 
3rd snapshot 𝑺ത

Fig. 1. The framework of TGA-based methods. The nodes in the trees below represent the generation of adversarial example sets and each one in
orange corresponds to the set generated in the current iteration.

4.2 Time-aware Link Gradient

When training DDNE, we minimize Lall through gradient de-
scent. And in general, the lower Lall is, the better performance
that DDNE has. After the training process of DDNE finishes, Lall
is dependent on S as the parameters of the model are fixed. In
adversarial network generation, we can update S(i, :) by taking
∂Lall/∂S(i, :) with S(i, :) being the variable. Lall integrates
the information of the entire network, which makes the links
that contribute the most in prediction covered among all links in
S(i, :). To find out the most valuable links in target link prediction,
we design Lt to only take the target link into consideration. Its
definition goes as follows.

Lt = −[1− Ât(i, j)]
2, (7)

with Ât(i, j) equal to P (At(i, j)), the probability gener-
ated by DDNE. This can make the time-aware link gradient,
∂Lt/∂S(i, :), more concentrated when it is applied in target
link attack. The calculation of ∂Lt/∂S(i, :) follows the chain
rule and the partial derivative can be obtained by calculating
∂f(S(i, :))(i, j)/∂S(i, :) with DDNE regarded as f , which is
described as

∂Lt
∂S(i, :)

= 2[1− Ât(i, j)]
∂Ât(i, j)

∂S(i, :)

= 2[1− Ât(i, j)]
∂f(S(i, :))(i, j)

∂S(i, :)
.

(8)

Note that ∂Lt/∂S(i, :) is a tensor with the same shape of S(i, :),
and the element gk(i, j) represents the gradient of linkage (i, j)
on the kth snapshot.

4.3 Traversal Search Based TGA

Given a dynamic network S, we aim to find 4S such that the
target link could be prevented being predicted from DDNE at a
minimum cost. Possible solutions are myriad since there are tens
of thousands of nodes and multiple snapshots in S, making it hard
to find a proper4S. Chen et al. propose to modify links according
to Eq. (9) to disturb GCN on the task of node classification. The
modification involves both the magnitude and sign of g(i, j),
which decides the candidate linkages and how they should be
modified, respectively.

Â(i, j) = A(i, j) + sign(g(i, j)). (9)

Considering a simple function f(x) = ax where a is the weight
and x denotes the independent variable, the f(x) changes faster
if a is larger and the sign of a determines the direction in
which f(x) changes. This small example gives us insights of the
relationship between Lt and the gradients. To effectively lower
Lt and mislead DDNE subsequently, we need to find the link
with maximum magnitude of gradient. The assumption follows
that the link with maximum magnitude of gradient contributes
the most when making inference. And the sign of gradients,
denoted as sign(g(i, j)), determines whether the effect is positive
or negative. However, DDNE is not a convex function as simple
as f(x). And neither GCN or DDNE could learn network features
and make prediction flawlessly, which might result in the deviation
of gradients. It means that modifying the link with maximum mag-
nitude of gradient does not always lead to best attack performance
and sign(g(i, j)) might express the opposite meaning.

4.3.1 Search across Snapshots
In TGA-based attack methods, we first group top c links based
on the magnitude of the gradients ∂Lt/∂S(i, :) and then find the
optimal link to modify within the c candidates. Specifically, within
one iteration, we first sort links based on |gij | with respect to each
snapshot, and then select top c links in each snapshot. We then
generate candidate adversarial examples by altering the linkage
status of the selected links. Specifically, if there is a link between
vi and vj at the kth snapshot, we then remove eij ; In the reverse
case, suppose vi and vj are not connected at the kth snapshot,
we then can add a link between vi and vj on the corresponding
snapshot. Note that we do not follow the rule defined in Eq. (9)
but just perform attack on the basis of linkage status. When
implementing the above steps, we treat the one-link modification
on the target snapshot as a basic operation, called OneStepAttack,
as shown in Algorithm 1.

4.3.2 Search between Iterations
We iteratively add perturbations to S(i, :) when performing the
attack. In each iteration, the perturbation 4S is designed accord-
ing to the time-aware link gradients. We have two options for
this, one is to use the gradients obtained in the last iteration (for
higher efficiency), and the other is to re-calculate them based
on the adversarial example generated in the last iteration (for
higher effectiveness). Here, we use the second one. We first obtain
all possible adversarial examples in γ iterations. After that, we
choose the one which could achieve the minimum pij as the final
adversarial example. The procedure of our TGA-Tra is visualized

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Iteration #1

Attack on
snapshot #1

Attack on
snapshot #2

Iteration #6

Snapshot #1

Snapshot #2

Attack on
snapshot #1

Attack on
snapshot #2

Iteration #1

TGA-Gre TGA-Tra

Iteration #6

Target link Added link Deleted link

Original network

Fig. 2. Illustration of TGA-Tra and TGA-Gre with ns = 2, γ = 6 and c = 2. The network in red dashed box is the optimal one in the corresponding
iteration. And the arrow in orange denotes that we modify the link on the first snapshot while the one in green represents that we make attack on
second snapshot.

Algorithm 1: OneStepAttack

Input: Original network S(i, :), the partial derivative
∂Lt/∂S(i, :), target snapshot k, number of
candidate adversarial examples c;

Output: A set of candidate adversarial networks S(i, :)
Initialize S(i, :) = S(i, :);
Initialize empty candidate adversarial examples set CA;
Initialize Q = {gk(i, 0), · · · , gk(i, n)} and sort it by the
magnitudes of their gradient in ascending order.;

for i = 0 to c do
Get the target link based on Q[i];
Generate a adversarial example and add it to CA;

end
return CA;

in the left part of Fig. 2. For instance, when we set the number of
historical snapshots ns = 2, γ = 6 and c = 2, we will have 212

possible adversarial examples as candidates, and the red dashed
box in Iteration 6 is the finally chosen one. Clearly we can get
the attack route through backtracking. The details of TGA-Tra are
presented in Algorithm 2.

4.4 Greedy Search Based TGA

TGA-Tra could be effective since it compares a large number of
modification schemes, but it is of relatively high time complexity,
especially for large N and ns. Taking the partial derivatives of
the input pairs of nodes (op1) and sorting them in descending or-
der (op2) are the two most time-consuming steps when performing
the attack. For TGA-Tra, we need to repeat the above two steps
at most cγnγs times to hide the target link from being predicted,
which is barely affordable in real cases. We thus propose another
greedy search method, namely TGA-Gre, as shown in the right
part of Fig. 2. Here, in each iteration, we select the one achieving
the minimum pij as the most effective adversarial example, which
is further considered as the input of next iteration. The details of
TGA-Gre are presented in Algorithm 3.

For a target link (i, j), TGA-Gre assumes that the lowest pij
in each iteration could lead to the best attack result. It avoids
massive comparisons between iterations and thus can significantly
accelerate the whole process. Similar to the procedure of TGA-
Tra, TGA-Gre also compares gt across all snapshots in each

Algorithm 2: TGA-Tra: Attack via traversal search
Input: A trained DDNE, original network S(i, :), number

of modifications γ, number of candidate
adversarial examples c;

Output: adversarial example: Ŝ(i, :)
Initialize candidate adversarial examples set
CA = S(i, :);

while γ > 0 do
Initialize empty set CA;
for each adv example in CA do

for k = 1 to ns do
g = ∂Lt/adv example;
Ŝ = OneStepAttack(adv example, g, k, c);
Add Ŝ to CA;

end
end
CA = CA;
γ = γ − 1;

end
for each adv example in CA do

p(i, j) = DDNE(adv example);
end
Select Ŝ(i, :) as the one with minimum p(i,j) in CA;
return Ŝ(i, :);

iteration. The major difference is that TGA-Gre elects a local
optimal link in each iteration. It is clear that we only need to
repeat op1 and op2 at most γcns times, which makes the attack
much more efficient.

5 EXPERIMENTS

5.1 Datasets

We perform experiments on six real-world dynamic networks,
with their basic statistics listed in Table 1.

• RADOSLAW [34]: It is an internal email network between
employees in a mid-sized manufacturing company. We
focus on the nodes appeared in 2010-01 and construct
network using their interactions from 2010-02-01 to 2010-
09-01.

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 3: TGA-Gre: Attack via greedy search

Input: A trained DDNE, original network S(i, :), target
link (i,j), number of modifications γ, number of
candidate adversarial examples c;

Output: adversarial example: Ŝ(i, :)
Initialize Ŝ(i, :) = S(i, :);
while γ > 0 do

Initialize empty candidate adversarial example set CA;
for k = 1 to ns do

g = ∂Lt/Ŝ(i, :);
Ŝ=OneStepAttack(Ŝ(i, :), g, k, c);
Add Ŝtemp(i, :) to CA;
p(i, j) = DDNE(Ŝ);

end
Select Ŝ(i, :) as the one with minimum p(i,j) in CA;
γ = γ − 1

end
return Ŝ(i, :)

• DNC [35] It is a directed network of emails in the 2016
Democratic National Committee email leak. We construct
the dynamic network using the emails between 2016-04-
29 and 2016-05-17 with all the nodes contained in the
dataset. The network is divided into 7 snapshots at the
interval of 3 days.

• LKML [36]: It is also an email network extracted from
the linux kernel mailing list. We focus on the users who
appeared on the mailing list between 2007-01-01 and
2007-04-01 and slice the data from 2007-04-01 to 2008-
10-01 at the interval of 3 months.

• ENRON [37]: It is an email network covering decades of
the email communication in Enron. We use the records
between 2000-04-01 and 2001-10-01 experiments and
slice them into 7 snapshots in 3-month increments. Also,
we only focus on part of the email address that at least
sent an email from 2000-01-01 to 2000-04-01.

• WIKI [38]: It is a communication network of the Serbian
Wikipedia. The temporal links appeared between 2000-
01-01 and 2001-10-01 are first divided into 7 parts at
the interval of 3 months and then used for constructing
dynamic network.

• FLICKR [39]: It records the friendships between users of
Flickr. We use the temporal links appeared from 2007-03-
01 to 2007-04-05 and focus on the users appeared from
2007-03-01 to 2007-03-06. The network is divided into 7
slices at the interval of 5 days.

As described, all the datasets are divided into 7 snapshots with
different intervals. The first snapshot provides the nodes we need
to focus and the rest are used for training and inference. All the
datasets are available online 1.

5.2 Baseline Methods
As the first work to study adversarial attack on DNLP algo-
rithms, we design two baseline attacks, RA and CNA, to compare
with TGA-Gre and TGA-Tra. Also, we implement another two
gradient-based attack methods, FGA and IG-JSMA, as baselines.

1. http://konect.cc/

TABLE 1
The basic statistics of the three datasets

Dataset |V | |ET | d̄ dmax
Timespan

(days)
RADOSLAW 151 72.2K 27.7 240 242

DNC 1,891 46.7K 1.24 198 731
LKML 2,210 201.7K 7.9 718 731

ENRON 2,628 308.8K 2.23 228 365
WIKI 46,300 66.6K 0.24 14,732 2,191

FLICKR 74,927 90.1K 2.03 1,411 30

d̄ represents the average degree of the network and dmax is the
maximum degree.

• Random Attack (RA): RA randomly modifies γ linkages
in all snapshots. In practice, we add b new connections
to the target node and remove γ − b links between the
target node and its neighbors. Here, we use RA to see the
robustness of DNLP algorithms under random noises.

• Common-Neighbor-based Attack (CNA): CNA adds b
links between node pairs with less common neighbors and
remove γ − b links between those with more common
neighbors. We adopt CNA as a baseline since common
neighbor is the basis of many similarity metrics between
pairwise nodes used for link prediction.

• Fast Gradient Attack (FGA) [22]: FGA recursively mod-
ify the linkage with maximum absolute gradient obtained
by ∂Lt/∂S(i, :), until the attack succeeds, or the number
of modifications reaches γ. We use FGA as a baseline to
address the importance of utilizing temporal information
in attacking DNLP algorithms.

• IG-JSMA [40]: IG-JSMA uses integrated gradients to
attack GCN under the settings of JSMA (Jacobian-based
saliency map attack) [41]. In this paper, we employ part of
IG-JSMA which focuses on graph structure manipulation,
making it suitable for attacking DDNE. And γ for IG-
JSMA is also set to 10.

We set γ = 10 in all experiments and b = 5 for RA and
CNA. For TGA-based methods, we set c to 5. We first train the
models with original data, and then feed adversarial examples
generated by DDNE to each model, to validate the effectiveness
of the attacks.

5.3 Evaluation Metrics
We choose attack success rate (ASR) and average attack modifi-
cation links (AML) as attack effectiveness criterion.

• ASR: The ratio of the amount of links that are success-
fully hidden to the total number of target links that can be
correctly predicted in the target snapshot.

• AML: The average amount of perturbation to prevent
each target link from being predicted. If it needs to modify
at least qi links to hide link i, then AML is defined as

AML =
1

Nl

Nl−1∑
i=0

qi, (10)

where Nl represents the number of target links. Note that
qi ≤ γ and the equality holds when the attack fails.

We use ASR to evaluate attack methods in the first place which
reflects the possibility to successfully perform attack and then
compare their AML when their ASR are close.

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

TABLE 2
Attack performance in terms of ASR and AML

Dataset ASR AML
RA CNA FGA IG-JSMA TGA-Gre TGA-Tra RA CNA FGA IG-JSMA TGA-Gre TGA-Tra

Attack on top-100 links with the highest existence probability
RADOSLAW 0.00 0.32 0.86 0.88 0.95 0.97 10.00 8.97 7.98 7.58 7.34 7.10
DNC 0.00 0.37 0.83 0.85 0.91 0.91 10.00 8.02 6.33 5.86 5.48 5.43
LKML 0.00 0.24 0.68 0.68 0.77 0.77 10.00 8.47 6.14 6.14 5.31 5.31
ENRON 0.02 0.33 0.77 0.80 0.82 0.83 9.97 8.26 5.56 4.93 4.71 4.67
WIKI 0.00 0.40 0.79 0.85 0.88 0.88 10.00 7.49 5.88 5.07 4.71 4.71
FLICKR 0.00 0.19 0.64 0.68 0.72 0.72 10.00 8.90 6.17 5.88 5.12 5.12

Attack on top-100 links with the highest degree centrality
RADOSLAW 0.12 0.58 0.97 0.99 1.00 1.00 9.44 6.98 4.27 3.61 3.54 3.44
DNC 0.06 0.48 0.89 0.91 0.91 0.91 9.66 7.53 5.66 5.12 4.87 4.77
LKML 0.02 0.23 0.56 0.56 0.56 0.56 9.90 8.17 6.78 6.70 6.49 6.49
ENRON 0.05 0.43 0.80 0.80 0.80 0.84 9.65 7.78 6.03 5.96 5.58 5.47
WIKI 0.40 0.38 0.58 0.59 0.63 0.68 7.02 6.81 5.33 4.99 4.66 4.66
FLICKR 0.09 0.39 0.95 0.95 0.97 0.98 9.50 6.22 3.45 3.43 2.32 2.25

Attack on top-100 links with the highest edge betweenness centrality
RADOSLAW 0.27 0.42 0.98 1.00 1.00 1.00 8.72 5.76 2.89 2.72 2.47 2.45
DNC 0.22 0.48 0.98 0.98 0.98 0.98 8.66 6.31 3.54 2.73 2.83 2.82
LKML 0.17 0.37 0.78 0.80 0.83 0.83 9.01 8.07 5.13 5.08 4.78 4.78
ENRON 0.13 0.39 0.97 0.99 0.99 0.99 9.28 8.25 4.57 3.94 3.29 3.21
WIKI 0.20 0.26 0.65 0.72 0.70 0.82 8.75 7.98 5.77 5.02 4.90 4.43
FLICKR 0.10 0.31 0.92 0.95 0.95 0.96 9.49 8.33 3.09 2.47 2.41 2.37

5.4 Results

Firstly, we use the generated adversarial examples to fool the
DDNE model to prevent target links from being predicted. We set
γ = 10 to ensure the disguise of modification, which also leads
the maximum of AML equaling to 10. The results are presented
in Table 2. The two TGA methods outperform FGA and IG-JSMA
in terms of both ASR and AML, while the two gradient-based
methods are better than the two heuristic methods, CNA and RA.
The results suggest that: 1) the gradients of DDNE is critical to
attack different DNLP methods; 2) utilizing temporal information
can indeed significantly improve the attack effectiveness. And
IG-JSMA is slightly better than FGA which may contribute to
the use of integrated gradients. Moreover, we study the attack
performance on 3 different types of links: the links that are most
likely to exist according to DDNE, the links with highest degree,
in terms of the sum of terminal-node degrees, and the links with
highest edge betweenness centrality. The other 2 types of links
which have physical meaning in real scenarios are easier to be
hidden from detection, reflecting the practicability of TGA-based
methods.

As expected, TGA-Tra behaves better than TGA-Gre, but the
latter is much more efficient and thus more practical in real-world
applications. The gap of the performance between TGA-Tra and
TGA-Gre overturns the hypothesis that the greatest drop of Lt
in each iteration does not lead to the best attack performance
sometimes. This enlightens us to further explore specific meanings
behind gt. Fig. 3 visualizes the attack schemes of TGA-Tra and
TGA-Gre performed on E(10, 4) of RADOSLAW on #3 snapshot.
We find that the performance of TGA-Tra and TGA-Gre are very
similar in each iteration, but their routes seem totally different. By
investigating these adversarial examples, we have the following
two observations:

• First, TGA-Tra is more likely to modify the links on earlier
historical snapshots, while TGA-Gre tends to change the
links on the most recent ones;

• Second, TGA-Tra prefers to add rather than delete links,
while TGA-Gre has the opposite tendency.

Such observations indicate that TGA-Tra could be more concealed
than TGA-Gre, since people tend to pay more attention to recent
events, e.g., link change in recent snapshots. On the other hand,
TGA-Gre may be preferred if we want to get some short-term
attack effect. Besides, TGA-Tra seems to have lower social cost,
since adding links are always easier than deleting in our social
circle. Since TGA-Gre has similar performance, while is much
more efficient, compared with TGA-Tra, we will mainly focus on
TGA-Gre in the rest of this paper.

5.4.1 Attack on Long-term Prediction
Besides focusing on the next immediate snapshot, researchers
always look into the performance of DNLP algorithms on long-
term prediction. That is whether the DNLP algorithms are able
to have a good prediction performance on not only the next
immediate snapshot but also the snapshots in the remote future.
Similarly, we would also like to investigate whether the TGA-
based methods are effective for hiding remote future links. To
address the problem, we first use DDNE to make predictions for
the #3, #4 and #5 snapshot with ns = 2 and then generate
adversarial examples for the three snapshots with TGA-Gre. The
comparison of the attack performance on the three snapshots are
shown in Table 3. We can see that, generally, the performance
of TGA-Gre are close in spite that the target snapshots vary.
Additionally, there are no significant variation tendency of the
attack performance. And we also present the results of TGA-Tra
as well as other baselines in Appendix B.1. The results show that
TGA-based attack methods are applicable for long-term prediction
attack.

5.4.2 Long-history Attack
The number of historical snapshots, ns, is one of the most signifi-
cant parameters that affect the performance of DNLP algorithms.

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
122

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
122

106

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
122

106 20

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
122

106 20

88

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
122

106 20

8875

Tra

𝑝(ଵ଴,ସ) = 0.81 𝑝(ଵ଴,ସ) = 0.76 𝑝(ଵ଴,ସ) = 0.67 𝑝(ଵ଴,ସ) = 0.56

𝑝(ଵ଴,ସ) = 0.44𝑝(ଵ଴,ସ) = 0.32𝑝(ଵ଴,ସ) = 0.24𝑝(ଵ଴,ସ) = 0.19

(a) Attack process of TGA-Tra

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

𝑝(ଵ଴,ସ) = 0.81

62
10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62
10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62

62

Gre

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62

88

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62

88

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62

8888

10

4

0
0

105

4

32

32 31

24

10

30

24

34

30

31

62

8888

20

𝑝(ଵ଴,ସ) = 0.76 𝑝(ଵ଴,ସ) = 0.67 𝑝(ଵ଴,ସ) = 0.56

𝑝(ଵ଴,ସ) = 0.44𝑝(ଵ଴,ସ) = 0.24𝑝(ଵ଴,ସ) = 0.19𝑝(ଵ଴,ସ) = 0.16

(b) Attack process of TGA-Gre

Fig. 3. Attack process of TGA-Tra and TGA-Gre on E(10, 4) of RADOSLAW on #3 snapshot.

RADOSLAW DNC LKML ENRON WIKI FLICKR
0.0

0.2

0.4

0.6

0.8

1.0

AS
R

ns = 2
ns = 3
ns = 4

RADOSLAW DNC LKML ENRON WIKI FLICKR
0

2

4

6

8

10

AM
L

ns = 2
ns = 3
ns = 4

Fig. 4. The performance of TGA-Gre when ns changes from 2 to 4 (From
left to right).

Typically, larger ns means more historical information can be
used in prediction, and thus may improve the performance of
DNLP algorithms. Higher accuracy will equip the model with
more precise gradients. Here, we are interested in whether the
increase of ns will get in the way of adversarial attacks or behave
the opposite.

We compare the attack performance of TGA-Gre on the six
datasets with respect to different ns. In particular, we first apply

TABLE 3
The performance of TGA-Gre on different snapshots

Dataset ASR AML
#3 #4 #5 #3 #4 #5

Attack on top-100 links with the highest existence probability
RADOSLAW 0.95 0.96 0.95 7.34 6.92 6.78

DNC 0.91 0.93 0.92 5.48 4.82 5.14
LKML 0.77 0.94 0.92 5.31 5.52 5.23

ENRON 0.82 1.00 0.95 4.71 3.27 3.28
WIKI 0.88 0.64 0.55 4.71 5.84 5.45

FLICKR 0.72 0.79 0.80 5.12 4.50 4.20
Attack on top-100 links with the highest degree centrality

RADOSLAW 1.00 1.00 1.00 3.54 3.68 3.55
DNC 0.91 0.95 0.96 4.87 3.73 4.69

LKML 0.56 0.77 0.80 6.49 7.07 6.76
ENRON 0.80 0.86 1.00 3.29 2.84 2.22

WIKI 0.63 0.94 0.59 4.66 2.36 5.12
FLICKR 0.97 0.89 1.00 2.32 2.35 1.25

Attack on top-100 links with the highest edge betweenness centrality
RADOSLAW 1.00 1.00 1.00 2.47 2.37 2.20

DNC 0.98 0.98 0.98 2.83 2.54 2.68
LKML 0.83 0.92 0.91 4.78 4.53 4.51

ENRON 0.98 1.00 1.00 3.29 2.84 2.22
WIKI 0.70 0.91 0.90 4.90 2.45 2.53

FLICKR 0.95 1.00 0.99 2.41 1.34 1.28

DDNE with the input sequence varying from 2 to 4, and then
generate adversarial examples with γ = 10. The results are shown
in Fig. 4, where we can see that, indeed, the performance of
TGA-Gre increases more or less as ns increases, indicating that
larger ns offers more precise gradient information so that TGA-

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

0

2

4

6

8

10

AM
L

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0
AS

R
RADOSLAW

0

2

4

6

8

10

AM
L

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

AS
R

DNC

0

2

4

6

8

10

AM
L

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

AS
R

LKML

0

2

4

6

8

10

AM
L

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

AS
R

ENRON

0

2

4

6

8

10

AM
L

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

AS
R

WIKI

0

2

4

6

8

10

AM
L

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

AS
R

FLICKR

ASR of TGA-GreASR of TGA-Tra AML of TGA-GreAML of TGA-Tra

The Ratio of Disturbance

Fig. 5. The performance of TGA-Gre and TGA-Tra under gradient disturbance.

Gre could be more effective. In the mean while, the AML also
increases. One possible reason is that the increase of ns expands
the solution space and TGA-Gre needs to modify more links
to make successful attacks. Different from the performance on
the other datasets, the attack performance increase slightly when
applying TGA-Gre to DNC and LKML as ns increases. We argue
that it is because larger ns makes DDNE more robust on these
two datasets and γ = 10 is not enough for TGA-Gre to attack on
some specific links. Actually, the performance of TGA-Gre will
increase if we set γ = 15.

5.4.3 Adding-link Attack
In social networks, it is considered that deleting links is of higher
social cost than adding. Moreover, temporal networks may also
have multiple interactions between a pair of nodes. Therefore,
deleting one link on a snapshot always removes all the corre-
sponding interactions in the given interval. And some links may
be too important to be deleted in real scenarios. Due to this gap
between the cost of deleting and adding links, we would like
to investigate how the attack performance of TGA-Gre will be
influenced if we just add, rather than rewire, links to the original
networks. The results are presented in Table 4, where we find that
the performance of TGA-Gre slightly decrease when we perform
the attack only by adding links. Such results indicate that, in
certain cases, we can perform the cheap attack on DNLP by only
adding a small number of links, at the cost of losing a little bit
attack performance.

Also, we are surprised that the performance of TGA-Gre with
only adding links on LKML slight increase. It shows that TGA-Gre
actually find the best modification schemes on different networks
and rewiring links might be the optimal choice in all cases.

5.5 Attack under Gradient Disturbance
TGA selects candidate links according to Lt obtained from DDNE
while Lt is easily affected by the weights of DDNE. The change
of hyper-parameters, such as the number of training epochs and

TABLE 4
The performance of TGA-Gre with only adding links

Dataset RADOSLAW DNC LKML ENRON WIKI FLICKR

Attack on top-100 links with the highest existence probability
ASR 0.97 0.91 0.77 0.83 0.88 0.72
GAIN 2.11 0.00 0.00 1.22 0.00 0.00
AML 7.10 5.43 5.31 4.67 4.71 5.12
GAIN -3.27 -0.91 0.00 -0.84 0.00 0.00

Attack on top-100 links with the highest degree centrality
ASR 1.00 0.98 0.83 0.99 0.82 0.96
GAIN 0.00 0.00 0.00 1.02 17.14 1.05
AML 2.45 2.82 4.78 3.21 4.43 2.37
GAIN -0.81 -0.35 0.00 -2.43 -9.59 -1.66
Attack on top-100 links with the highest edge betweenness centrality
ASR 1.00 0.91 0.56 0.84 0.68 0.98
GAIN 0.00 0.00 0.00 5.00 7.94 1.03
AML 3.44 4.77 6.49 5.47 4.66 2.25
GAIN -2.82 -2.05 0.00 -1.97 0.00 -3.01

the coefficient of regularization term, could result in the change
of the weights. It may introduce noise into Lt but not lower the
performance of the model. Would the performance of TGA be
affected subsequently? We investigate into the problem by adding
disturbance to Lt manually. We first randomly select θ|V | nodes
and then add noise sampled fromN (µ, 1) where µ = 0.2L1(Lt).
Fig. 5 shows the performance of TGA-Gre and TGA-Tra under
different ratios of disturbance. Generally, TGA-Gre and TGA-Tra
perform relatively stable when θ varies from 0.1 to 0.2. When θ
further increases, the performance drops on some datasets. ASR
on LKML and WIKI stays the same as θ increases, indicating the
robustness of TGA. And the increase of AML means TGA-Gre
and TGA-Tra need to modify more links to maintain ASR. On
FLICKR, the performance of TGA-Gre and TGA-Tra significantly
drops when θ increases to 0.3. We argue that there exists some key
links on FLICKR which make TGA more sensitive.

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

5.6 Runtime Comparison

As mentioned in Sec. 4, we propose TGA-Gre to reduce the
computational complexity to make the attack more practical. To
highlight the efficiency of TGA-Gre, we compare the runtime of
different attack methods performed on the top-100 links with the
highest existence probability of DNC with respect to increasing γ.
In the runtime comparison, the number of modified links of each
method must reach γ no matter it succeeds or not. And we exclude
the runtime of TGA-Tra since it is too time-consuming to finish
the attack without early stop (stops once the attack succeeds) in
an acceptable time. It would take hours for TGA-Tra to attack one
link in DNC when γ = 20. Thus, it is hard to compare the runtime
in one figure. In Fig. 6, we can find that the runtime of TGA-
Gre, FGA and IG-JSMA are comparable since all of them are
gradient-based approaches. Though TGA-Gre is more effective
in practice, it is slightly slower for that it needs comparison
among different candidate adversarial examples in each iteration.
As for RA and CNA, attacking with no gradient information makes
them the fastest methods among all the methods despite the poor
performance. In fact, if the attack is performed with early stop,
TGA-Gre will have shorter runtime than FGA.

0 5 10 15 20
0

25

50

75

100

125

150

175

200

Ru
nn

in
g 

tim
e(

s)

RA
CNA
FGA
IG-JSMA
TGA-Gre

Fig. 6. Runtime of different attack methods performed on the top-100
links with the highest existence probability of DNC.

5.7 Case Study: Ethereum Transaction Network

Above experiments conducted on six benchmark datasets have
shown the effectiveness of TGA-Tra and TGA-Gre on DDNE.
In this section, we apply TGA-Gre on the Ethereum transaction
network to hide specific transactions from detection. Ethereum
is a public blockchain-based platform with the support of smart
contract. With around 300 billion USD market capitalization and
over 500 billion USD monthly transaction volume, it becomes
the largest virtual currency trading platform second to Bitcoin.
A bunch of researchers have mined the valuable data with the
help of graph analysis [42], [43], [44] among which the analysis
of temporal links, i.e. the transactions, is one of the research
emphases [43].

We use the data provided by XBlock2 and extract the trans-
action records between 2016-02 and 2016-06. The data are sliced

2. http://xblock.pro

Fig. 7. Network structure of #3 snapshot of Ethereum network.

into 5 snapshots at the interval of 1 month and modeled as a
dynamic network with 2866 nodes which represent the transaction
addresses. We focus on two types of accounts: normal accounts
and those belong to Ethereum pool which are identified according
to the records on Etherscan3. Fig. 7 visualizes #3 snapshot of the
Ethereum transaction network from which we can find clusters
centered at those Ethereum pool accounts, such as DwarfPool and
CoinMine. To hide some target links in the transaction network
from the detection of DDNE, we apply TGA-Gre and TGA-Tra to
generate corresponding adversarial examples. Table. 5 compares
the attack performance of TGA-based methods and the baselines.
TGA-Gre and TGA-Tra have the best performance among the five
methods. Though IG-JSMA has the same ASR as TGA-Gre and
TGA-Tra does, it needs to modify more links. In practice, adding
a link in the transaction network could be costly and thus AML
matters in this occasion.

TABLE 5
Attack performance on Ethereum transaction network

RA CNA FGA IG-JSMA TGA-Gre TGA-Tra
ASR 0.00 0.13 0.91 0.94 0.94 0.94
AML 10.00 9.67 8.96 8.55 8.02 8.02

As we can observe in Fig. 7, most links in the network
are those between normal addresses and Ethereum-pool-belonged
addresses which are the way normal users making profits from
the pools. In real scenarios, we do not pay attentions to these
links. Instead, the links between normal addresses are noteworthy.
Suppose a user want to make a vital transaction recondite in the
near future, he or she could make transfers to certain addresses
with the guidance of TGA. Then the transaction will not be
discovered from current time scope even with the help of DDNE.

3. https://etherscan.io/

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

6 CONCLUSION

In this paper, we present the first work of adversarial attack
on DNLP, and propose the time-aware gradient, as well as two
TGA methods, namely TGA-Tra and TGA-Gre, to realize the
attack. Comprehensive experiments have been carried out on six
benchmark networks and also the Ethereum transaction network.
The results show that our TGA methods behave better than the
other baselines, achieving the state-of-the-art attack performance
on DNLP. Besides, we investigate into the performance of TGA-
Gre in several typical occasions in DNLP, including long-term
prediction and long-history prediction. Interestingly, we also find
that long-term prediction seems to be more vulnerable to adversar-
ial attacks, while using longer historical information can enhance
the robustness of DNLP algorithms. The results of adding-link
attack also prove the practicability of TGA-Gre.

Currently, TGA methods rely on the gradients and it requires
researchers know every detail of the target DNLP model which
limits its application scenarios. In the future, we would like to
study the problem of black-box attack on DNLP and further
propose better strategies to improve their attack performance; on
the other hand, we will also seek for methods to defend against
such adversarial attacks, to achieve more robust DNLP algorithms.
Besides, we would investigate into efficient adversarial attack
methods on large-scale networks to extend its practicability.

ACKNOWLEDGMENTS

The authors appreciate all the members in the IVSN Research
Group, Zhejiang University of Technology for the valuable dis-
cussion. This work was partially supported by the National Nat-
ural Science Foundation of China under Grant No.62072406,
Grant No.61572439 and Grant No.61973273, by the Zhejiang
Provincial Natural Science Foundation of China under Grant
No.LR19F030001 and Grant No.LY19F020025.

REFERENCES

[1] Y. Gong, Y. Zhu, L. Duan, Q. Liu, Z. Guan, F. Sun, W. Ou, and K. Q.
Zhu, “Exact-k recommendation via maximal clique optimization,” arXiv
preprint arXiv:1905.07089, 2019.

[2] S. Zhang, J. Ai, and X. Li, “Correlation between the distribution of soft-
ware bugs and network motifs,” in 2016 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2016, pp.
202–213.

[3] V. Fionda and G. Pirro, “Community deception or: How to stop fearing
community detection algorithms,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 4, pp. 660–673, 2018.

[4] İ. Güneş, Ş. Gündüz-Öğüdücü, and Z. Çataltepe, “Link prediction using
time series of neighborhood-based node similarity scores,” Data Mining
and Knowledge Discovery, vol. 30, no. 1, pp. 147–180, 2016.

[5] A. Özcan and Ş. G. Öğüdücü, “Multivariate temporal link prediction
in evolving social networks,” in 2015 IEEE/ACIS 14th International
Conference on Computer and Information Science (ICIS). IEEE, 2015,
pp. 185–190.

[6] C. Fu, M. Zhao, L. Fan, X. Chen, J. Chen, Z. Wu, Y. Xia, and Q. Xuan,
“Link weight prediction using supervised learning methods and its
application to yelp layered network,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 8, pp. 1507–1518, 2018.

[7] Q. Xuan, M. Zhou, Z. Zhang, C. Fu, Y. Xiang, Z. Wu, and V. Filkov,
“Modern food foraging patterns: Geography and cuisine choices of
restaurant patrons on yelp,” IEEE Transactions on Computational Social
Systems, vol. 5, no. 2, pp. 508–517, 2018.

[8] W. Jin, Y. Li, H. Xu, Y. Wang, and J. Tang, “Adversarial attacks and
defenses on graphs: A review and empirical study,” arXiv preprint
arXiv:2003.00653, 2020.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[10] X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang, “A deep learning
approach to link prediction in dynamic networks,” in Proceedings of the
2014 SIAM International Conference on Data Mining. SIAM, 2014, pp.
289–297.

[11] T. Li, B. Wang, Y. Jiang, Y. Zhang, and Y. Yan, “Restricted boltzmann
machine-based approaches for link prediction in dynamic networks,”
IEEE Access, vol. 6, pp. 29 940–29 951, 2018.

[12] J. Chen, J. Zhang, X. Xu, C. Fu, D. Zhang, Q. Zhang, and Q. Xuan, “E-
lstm-d: A deep learning framework for dynamic network link prediction,”
arXiv preprint arXiv:1902.08329, 2019.

[13] T. Li, J. Zhang, S. Y. Philip, Y. Zhang, and Y. Yan, “Deep dynamic
network embedding for link prediction,” IEEE Access, vol. 6, pp. 29 219–
29 230, 2018.

[14] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Captur-
ing network dynamics using dynamic graph representation learning,”
Knowledge-Based Systems, vol. 187, p. 104816, 2020.

[15] K. Lei, M. Qin, B. Bai, G. Zhang, and M. Yang, “Gcn-gan: A non-
linear temporal link prediction model for weighted dynamic networks,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 388–396.

[16] X. Wu, J. Wu, Y. Li, and Q. Zhang, “Link prediction of time-evolving
network based on node ranking,” Knowledge-Based Systems, p. 105740,
2020.

[17] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
“Continuous-time dynamic network embeddings,” in Companion of the
The Web Conference 2018 on The Web Conference 2018. International
World Wide Web Conferences Steering Committee, 2018, pp. 969–976.

[18] S. Nagaraja, “The impact of unlinkability on adversarial community
detection: effects and countermeasures,” in International Symposium on
Privacy Enhancing Technologies Symposium. Springer, 2010, pp. 253–
272.

[19] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, “Hid-
ing individuals and communities in a social network,” Nature Human
Behaviour, vol. 2, no. 2, p. 139, 2018.

[20] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks
on neural networks for graph data,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2018, pp. 2847–2856.

[21] D. Zügner, O. Borchert, A. Akbarnejad, and S. Günnemann, “Adversarial
attacks on graph neural networks: Perturbations and their patterns,”
ACM Trans. Knowl. Discov. Data, vol. 14, no. 5, Jun. 2020. [Online].
Available: https://doi.org/10.1145/3394520

[22] J. Chen, Y. Wu, X. Xu, Y. Chen, H. Zheng, and Q. Xuan, “Fast gradient
attack on network embedding,” arXiv preprint arXiv:1809.02797, 2018.

[23] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural
networks via meta learning,” in International Conference on Learning
Representations, 2019.

[24] X. Wang, J. Eaton, C.-J. Hsieh, and F. Wu, “Attack graph convolutional
networks by adding fake nodes,” arXiv preprint arXiv:1810.10751, 2018.

[25] J. Li, T. Xie, L. Chen, F. Xie, X. He, and Z. Zheng, “Adversarial attack
on large scale graph,” arXiv preprint arXiv:2009.03488, 2020.

[26] A. Bojchevski and S. Günnemann, “Adversarial attacks on node em-
beddings via graph poisoning,” ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long
Beach, California, USA: PMLR, 09–15 Jun 2019, pp. 695–704.

[27] M. Sun, J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song, “Data
poisoning attack against unsupervised node embedding methods,” arXiv
preprint arXiv:1810.12881, 2018.

[28] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[29] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
international conference on world wide web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[30] F. Feng, X. He, J. Tang, and T.-S. Chua, “Graph adversarial training:
Dynamically regularizing based on graph structure,” IEEE Transactions
on Knowledge and Data Engineering, 2019.

[31] H. Jin and X. Zhang, “Latent adversarial training of graph convolution
networks,” in ICML Workshop on Learning and Reasoning with Graph-
Structured Representations, 2019.

[32] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi,
S. De, R. Stanforth, and P. Kohli, “Adversarial robustness through local
linearization,” in Advances in Neural Information Processing Systems,
2019, pp. 13 847–13 856.

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

[33] F. Tramèr and D. Boneh, “Adversarial training and robustness for
multiple perturbations,” in Advances in Neural Information Processing
Systems, 2019, pp. 5866–5876.

[34] “Manufacturing emails network dataset – KONECT,” Apr. 2017. [On-
line]. Available: http://konect.uni-koblenz.de/networks/radoslaw email

[35] “Dnc co-recipient network dataset – KONECT,” Sep. 2016. [Online].
Available: http://konect.uni-koblenz.de/networks/dnc-temporalGraph

[36] “Linux kernel mailing list replies network dataset – KONECT,” Sep.
2016. [Online]. Available: http://konect.uni-koblenz.de/networks/lkml-
reply

[37] R. Rossi and N. Ahmed, “Network repository,” 2013. [Online].
Available: http://networkrepository.com

[38] J. Sun, J. Kunegis, and S. Staab, “Predicting user roles in social networks
using transfer learning with feature transformation,” in Proc. ICDM
Workshop on Data Min. in Netw., 2016.

[39] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Growth of the Flickr social network,” in Proc. Workshop on
Online Soc. Netw., 2008, pp. 25–30.

[40] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples on graph data: Deep insights into attack and
defense,” arXiv preprint arXiv:1903.01610, 2019.

[41] R. Wiyatno and A. Xu, “Maximal jacobian-based saliency map attack,”
arXiv preprint arXiv:1808.07945, 2018.

[42] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
“Understanding ethereum via graph analysis,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
1484–1492.

[43] J. Wu, D. Lin, Z. Zheng, and Q. Yuan, “T-edge: Temporal weighted
multidigraph embedding for ethereum transaction network analysis,”
arXiv preprint arXiv:1905.08038, 2019.

[44] D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “Modeling and understanding
ethereum transaction records via a complex network approach,” IEEE
Transactions on Circuits and Systems–II: Express Briefs, 2020.

Jinyin Chen received BS and PhD degrees from
Zhejiang University of Technology, Hangzhou,
China, in 2004 and 2009, respectively. She stud-
ied evolutionary computing in Ashikaga Institute
of Technology, Japan in 2005 and 2006. She
is currently a professor in the Institute of Cy-
berspace Security and the College of Informa-
tion Engineering, Zhejiang University of Tech-
nology. Her research interests include artificial
intelligence security, graph data mining and evo-
lutionary computing.

Jian Zhang received BS degree in automa-
tion from Zhejiang University of Technology,
Hangzhou, China, in 2017. He is currently work-
ing toward the PhD degree in the College of
Information Engineering, Zhejiang University of
Technology, Hangzhou, China.

He is currently focusing on network analysis
and deep learning, especially the intersection of
the two fields.

Zhi Chen received the BS and MS degrees in
EECS from UC Berkeley, in 2019 and 2020,
respectively. He is currently working toward the
PhD degree in computer science with the Univer-
sity of Illinois, Urbana-Champaign. At UC Berke-
ley, he was a research assistant with the Center
for Long-Term Cybersecurity from 2019 to 2020,
and with BAIR Lab in 2018. His research inter-
ests include security and machine learning.

Min Du received the PhD degree from the
School of Computing, University of Utah in 2018,
after completing the bachelor’s degree and the
master’s degree from Beihang University. She
was a Postdoctoral scholar in EECS department,
UC Berkeley from 2018 to 2019. She is now
doing AI security research in Palo Alto Networks.
Her research interests include big data analytics
and machine learning security.

Qi Xuan (M’18) received the BS and PhD de-
grees in control theory and engineering from
Zhejiang University, Hangzhou, China, in 2003
and 2008, respectively. He was a Post-Doctoral
Researcher with the Department of Information
Science and Electronic Engineering, Zhejiang
University, from 2008 to 2010, and a Research
Assistant with the Department of Electronic En-
gineering, City University of Hong Kong, Hong
Kong, in 2010 and 2017. From 2012 to 2014, he
was a Post-Doctoral Fellow with the Department

of Computer Science, University of California at Davis, CA, USA. He
is a member of the IEEE and is currently a Professor with the Institute
of Cyberspace Security, College of Information Engineering, Zhejiang
University of Technology, Hangzhou, China. His current research inter-
ests include network science, graph data mining, cyberspace security,
machine learning, and computer vision.

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

APPENDIX A
THE PERFORMANCE OF DDNE
We mainly discuss the performance of TGA-based attack methods
in this paper. As the victim model of TGA, DDNE should perform
well on DNLP. Table 6 presents the performance of DDNE with
respect to AUC and AP, showing that DDNE could make precise
dynamic link prediction in most cases. And the performance on
different snapshot varies due to the different structure of each
snapshot. The good performance ensures the reliability of the
gradients provided by DDNE.

TABLE 6
The prediction performance of DDNE

Dataset AUC AP
#3 #4 #5 #3 #4 #5

RADOSLAW 85.46 87.73 84.61 86.24 88.20 85.89
DNC 81.58 74.52 78.59 89.08 84.66 87.00

LKML 95.61 96.00 94.88 95.47 94.43 95.05
ENRON 93.37 90.94 89.46 93.61 91.27 90.03

WIKI 68.38 84.75 61.47 68.09 89.95 66.97
FLICKR 87.34 85.89 85.30 88.92 87.22 86.50

APPENDIX B
ADDITIONAL RESULTS

B.1 Attack on Long-term Prediction
To compare the attack performance on long-term prediction, we
also present the attack results of TGA-Tra as well as the baselines
in Table 7 and Table 8. And the results prove the effectiveness
of TGA-Gre and TGA-Tra again. (The results of TGA-Gre are
presented in Sec. 5.4.1.) Though the performance of each attack
method is affected by the change of network structure, TGA-Tra
outperforms other baselines in most cases and it also performs
slightly better than TGA-Gre. The AML of TGA-Tra is not
always the lowest compared with the baselines. It is because that
TGA-Tra might need to modify more links when making attack
on some target links. Besides, the performance of TGA-Gre and
TGA-Tra seems more stable when they carry out attack on long-
term prediction, indicating that they are more practical in real-
world applications.

B.2 Long history attack
Attack performance is highly associated with the victim model
and the network structure. The change of ns alters the weights
of DDNE and also changes the target snapshot we focus on (The
target snapshot is the next immediate snapshot in this experiment).
As is shown in Fig. 8, the performance of CNA, FGA and IG-
JSMA varies as TGA-Gre does when ns changes from 2 to 4 and
it does not show any discernible patterns. (The results of TGA-
Gre are shown in Sec. 5.4.2.) The performance on RADOSLAW

and FLICKR is quite stable as ns changes while it is relatively
volatile on DNC, LKML and ENRON. The two gradient-based attack
methods, FGA and IG-JSMA, have comparable performance close
to TGA-Gre. Although all the methods could make long history
attack, TGA-Gre is the most effective one among them. Note
that we do not present the results of RA since it could hardly
make successful attack on the top-100 links with highest existence
probability. And nor do we show the performance of TGA-Tra
since it is too time-consuming when ns = 4. We believe the
performance of TGA-Tra is better than TGA-Gre according the
results of above experiments.

RADOSLAW DNC LKML ENRON WIKI FLICKR
0.0

0.2

0.4

0.6

0.8

1.0

AS
R

ns = 2
ns = 3
ns = 4

RADOSLAW DNC LKML ENRON WIKI FLICKR
0

2

4

6

8

10

AM
L

ns = 2
ns = 3
ns = 4

(a) CNA

RADOSLAW DNC LKML ENRON WIKI FLICKR
0.0

0.2

0.4

0.6

0.8

1.0

AS
R

ns = 2
ns = 3
ns = 4

RADOSLAW DNC LKML ENRON WIKI FLICKR
0

2

4

6

8

10

AM
L

ns = 2
ns = 3
ns = 4

(b) FGA

RADOSLAW DNC LKML ENRON WIKI FLICKR
0.0

0.2

0.4

0.6

0.8

1.0

AS
R

ns = 2
ns = 3
ns = 4

RADOSLAW DNC LKML ENRON WIKI FLICKR
0

2

4

6

8

10

AM
L

ns = 2
ns = 3
ns = 4

(c) IG-JSMA

Fig. 8. The performance of CNA, FGA and IG-JSAM when ns changes
from 2 to 4.

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

TABLE 7
The performance of attack on long-term perdiction (ASR)

Dataset RA CNA FGA IG-JSMA TGA-Tra
#3 #4 #5 #3 #4 #5 #3 #4 #5 #3 #4 #5 #3 #4 #5

Attack on top-100 links with the highest existence probability
RADOSLAW 0.00 0.00 0.00 0.32 0.30 0.35 0.86 0.91 0.89 0.88 0.91 0.90 0.97 0.99 0.99

DNC 0.00 0.00 0.00 0.37 0.35 0.34 0.83 0.84 0.92 0.85 0.89 0.90 0.91 0.93 0.95
LKML 0.00 0.00 0.00 0.24 0.19 0.27 0.68 0.72 0.79 0.68 0.70 0.72 0.77 0.94 0.92

ENRON 0.02 0.00 0.01 0.33 0.29 0.30 0.77 0.80 0.91 0.80 0.84 0.84 0.83 1.00 0.95
WIKI 0.00 0.00 0.00 0.40 0.42 0.49 0.79 0.67 0.78 0.85 0.67 0.58 0.88 0.69 0.59

FLICKR 0.00 0.00 0.00 0.19 0.19 0.23 0.64 0.57 0.67 0.68 0.60 0.60 0.72 0.79 0.80
Attack on top-100 links with the highest degree centrality
RADOSLAW 0.12 0.11 0.16 0.58 0.49 0.53 0.97 0.98 0.97 0.99 1.00 1.00 1.00 1.00 1.00

DNC 0.06 0.07 0.06 0.48 0.46 0.52 0.89 0.88 0.92 0.91 0.92 0.91 0.91 0.98 0.96
LKML 0.02 0.01 0.00 0.23 0.24 0.19 0.56 0.63 0.60 0.56 0.64 0.67 0.56 0.92 0.80

ENRON 0.05 0.15 0.22 0.43 0.41 0.47 0.80 0.85 0.86 0.80 0.86 0.88 0.84 1.00 1.00
WIKI 0.40 0.40 0.16 0.38 0.41 0.38 0.58 0.83 0.60 0.59 0.85 0.68 0.68 1.00 0.64

FLICKR 0.09 0.07 0.14 0.39 0.37 0.39 0.95 0.95 0.93 0.95 0.99 0.99 0.98 1.00 1.00
Attack on top-100 links with the highest edge betweenness centrality
RADOSLAW 0.27 0.27 0.32 0.42 0.38 0.44 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DNC 0.22 0.30 0.29 0.48 0.47 0.47 0.98 0.97 0.98 0.98 0.98 0.99 0.98 0.99 0.99
LKML 0.17 0.16 0.13 0.37 0.29 0.33 0.78 0.75 0.77 0.80 0.83 0.85 0.83 0.91 0.91

ENRON 0.13 0.10 0.15 0.39 0.42 0.41 0.97 0.98 0.98 0.99 1.00 1.00 0.99 1.00 1.00
WIKI 0.20 0.34 0.33 0.26 0.47 0.40 0.65 0.67 0.83 0.77 0.80 0.88 0.82 0.93 0.93

FLICKR 0.10 0.08 0.10 0.31 0.28 0.26 0.92 0.90 0.91 0.95 0.93 0.95 0.96 1.00 1.00

TABLE 8
The performance of attack on long-term prediction (AML)

Dataset RA CNA FGA IG-JSMA TGA-Tra
#3 #4 #5 #3 #4 #5 #3 #4 #5 #3 #4 #5 #3 #4 #5

Attack on top-100 links with the highest existence probability
RADOSLAW 10.00 10.00 10.00 8.97 9.13 8.67 7.65 7.02 7.17 7.58 7.02 7.57 7.10 6.65 6.62

DNC 10.00 10.00 10.00 8.02 8.32 8.41 5.52 5.63 4.98 5.86 4.90 5.59 5.43 4.80 5.06
LKML 10.00 10.00 10.00 8.47 9.03 8.45 5.33 5.78 5.39 6.14 5.40 5.87 5.31 5.51 5.23

ENRON 9.97 10.00 9.95 8.26 8.74 8.71 4.69 3.95 3.92 4.93 3.90 3.92 4.67 3.24 3.27
WIKI 10.00 10.00 10.00 7.49 7.06 6.77 4.71 5.87 7.29 5.07 5.80 6.93 4.71 5.67 6.31

FLICKR 10.00 10.00 10.00 8.90 8.97 8.83 5.12 4.67 4.53 5.88 4.65 4.59 5.12 4.50 4.20
Attack on top-100 links with the highest degree centrality

RADOSLAW 9.44 9.51 9.14 6.98 7.45 7.28 3.75 2.87 3.69 3.61 3.58 3.60 3.44 2.34 3.49
DNC 9.66 9.60 9.73 7.53 7.61 7.43 4.79 3.29 5.04 5.12 2.78 4.72 4.77 2.50 4.69

LKML 9.90 9.91 10.00 8.17 8.23 8.57 6.49 4.55 6.80 6.70 4.55 6.77 6.49 4.53 6.76
ENRON 9.65 9.05 8.35 7.78 8.01 7.56 5.56 3.21 2.83 5.96 3.12 2.74 5.47 2.80 2.56

WIKI 7.02 7.24 9.24 6.81 6.77 6.88 4.66 1.94 5.17 4.99 1.91 5.15 4.66 1.81 5.09
FLICKR 9.50 9.66 9.22 6.22 6.34 6.32 2.43 2.08 1.25 3.43 1.97 1.25 2.25 1.34 1.25

Attack on top-100 links with the highest edge betweenness centrality
RADOSLAW 8.72 8.51 8.33 5.76 6.25 5.74 2.55 2.49 2.33 2.72 2.33 2.22 2.45 2.34 2.17

DNC 8.66 8.40 8.33 6.31 6.57 6.49 2.87 2.98 2.65 2.73 3.01 2.65 2.82 2.50 2.64
LKML 9.01 8.91 9.25 8.07 8.58 8.34 4.82 4.56 4.63 5.08 4.55 4.60 4.78 4.53 4.51

ENRON 9.28 9.54 9.00 8.25 8.46 8.25 3.25 3.22 2.99 3.94 3.22 3.03 3.21 2.80 2.20
WIKI 8.75 7.78 7.73 7.98 6.22 6.79 4.78 2.57 3.71 5.02 2.49 3.58 4.43 1.81 2.36

FLICKR 9.49 9.72 9.52 8.33 9.12 9.17 2.51 1.41 1.33 2.47 1.34 1.26 2.37 1.34 1.21

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110580, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

B.3 Runtime comparison
In Sec. 5.6, we take the dataset DNC as an example to compare
the runtime of different attack methods. The results show that the
runtime of each algorithm is proportional to γ. In this part, we
further show the runtime of the five attack methods on the six
datasets in Table 9. Due to the inefficiency of TGA-Tra and the
limitation of computing resource, we do not list it in the table. As
is shown, RA and CNA still have the lowest time cost though they
have the poorest attack performance. And when the networks get
larger, the runtime of the two methods also significantly increases,
which is mainly caused by the increase of DDNE’s inference time.
As for the three gradient-based attack methods, the increase of
time cost is even more significant as the networks get larger. It cost
nearly an hour to attack randomly selected 100 links in FLICKR

when γ = 10. We would investigate into effective yet efficient
adversarial attack methods on large-scale networks in future work.

TABLE 9
Runtime of different attack methods performed on the randomly

selected 100 links with γ = 10.(s)

RA CNA FGA IG-JSM TGA-Gre
RADOSLAW 2.27 2.27 30.28 31.06 34.18

DNC 18.48 19.21 87.22 88.51 90.98
LKML 20.34 22.67 92.97 94.86 97.49

ENRON 25.38 27.02 98.47 101.54 108.69
WIKI 203.45 212.58 2,252.41 2,252.41 2,582.98

FLICKR 445.23 451.79 3,191.25 3,321.83 3,582.62

Authorized licensed use limited to: Trial User - Zhejiang Ocean University. Downloaded on September 10,2021 at 00:01:45 UTC from IEEE Xplore.  Restrictions apply. 


